GUIDE TO ECOLOGICAL ENGINEERING:
THE RESTORATION
OF CORAL REEFS AND
ASSOCIATED ECOSYSTEMS

Aurore LÉOCADIE
Sylvain PIOCH
Mathieu PINAULT
ACKNOWLEDGEMENTS

This guide is brought to you by IFRECOR, the French Coral Reef Initiative. Published in January 2020, it is the result of extensive data collection by French field officers. Now, thanks to UNEP, it is being translated into English. We would like to thank UNEP for bringing an international dimension to this project.

We wish to thank all those who helped to proofread and improve this guide, in particular:

Catherine Gabrié
IFRECOR
c.gabrie@free.fr

Fanny Kerninon
University of Western Brittany, French National Centre for Scientific Research, French National Research Institute for Sustainable Development, French Research Institute for Exploitation of the Sea, Laboratory of Marine Environmental Sciences of the European Institute for Marine Studies
fanny.kerninon@univ-brest.fr

Francis Staub
Biodiversité Conseil
fsstaub@biodiv-conseil.fr

Rachel Bitoun
CREOCEAN
bitoun.rachel@hotmail.fr

Olivier Le Brun
CREOCEAN
lebrun@creocean.fr

Jimmy Le Bec
DEAL Guadeloupe
jimmy.le-bec@developpement-durable.gouv.fr

Bernard Salvat
University of Perpignan
bssalvat@univ-perp.fr

Mélanie Herteman
Nature et Développement
mherteman.ecopro@gmail.com

Thanks are also due to the entire “Anthropized Systems Ecology” team at the Centre for Functional and Evolutionary Ecology, and to Adrien Gallinaro, Julien Richard, Marie Zion, Laura Massinelli and Mathieu de Langlard. Thanks as well to the long list of people who helped proofread this work.

AUTHORS

Aurore Léocadie
Paul Valéry University - joint research unit, Centre for Functional and Evolutionary Ecology
auroreleocadie@gmail.com

Sylvain Pioch
Paul Valéry University - joint research unit, Centre for Functional and Evolutionary Ecology
sylvain.pioch@univ-montp3.fr

Mathieu Pinault
MAREX, University of Reunion Island - joint research unit, Tropical Marine Ecology of the Pacific and Indian Oceans
math.pinault@gmail.com

PUBLISHER

©IFRECOR - July 2020

FORMATTING AND GRAPHIC DESIGN
© Anastasia Pradarelli
anastasia.pradarelli@gmail.com

ENGLISH TRANSLATION

Edward Ashley and Peter Castellani

CITATION STYLE

CONTENTS

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. 4 - 9</td>
<td>1 OBJECTIVES OF THE GUIDE</td>
</tr>
<tr>
<td>P. 6 - 7</td>
<td>Definitions of ecological engineering and ecological restoration</td>
</tr>
<tr>
<td>P. 8 - 9</td>
<td>Why restore? How to restore?</td>
</tr>
<tr>
<td>P. 10 - 13</td>
<td>2 REGULATORY FRAMEWORK FOR MITIGATION IN THE MARINE ENVIRONMENT</td>
</tr>
<tr>
<td>P. 14 - 53</td>
<td>3 CORAL REEFS</td>
</tr>
<tr>
<td>P. 16 - 18</td>
<td>The major challenges of coral reef conservation</td>
</tr>
<tr>
<td>P. 19</td>
<td>The role of coral reefs</td>
</tr>
<tr>
<td>P. 20</td>
<td>What are the threats?</td>
</tr>
<tr>
<td>P. 21 - 23</td>
<td>What are their consequences?</td>
</tr>
<tr>
<td>P. 24 - 27</td>
<td>Ecological engineering techniques for coral reefs</td>
</tr>
<tr>
<td>P. 28 - 51</td>
<td>Coral reef case studies</td>
</tr>
<tr>
<td>P. 52</td>
<td>Conclusions regarding coral reefs</td>
</tr>
<tr>
<td>P. 54 - 69</td>
<td>4 SEAGRASS BEDS</td>
</tr>
<tr>
<td>P. 56 - 57</td>
<td>The major challenges of seagrass conservation</td>
</tr>
<tr>
<td>P. 58</td>
<td>The roles of seagrass</td>
</tr>
<tr>
<td>P. 59</td>
<td>What are the threats?</td>
</tr>
<tr>
<td>P. 60 - 64</td>
<td>Ecological engineering techniques for seagrasses</td>
</tr>
<tr>
<td>P. 66 - 68</td>
<td>Seagrass case studies</td>
</tr>
<tr>
<td>P. 69</td>
<td>Conclusions regarding seagrass beds</td>
</tr>
<tr>
<td>P. 70 - 97</td>
<td>5 MANGROVES</td>
</tr>
<tr>
<td>P. 72 - 73</td>
<td>The major challenges of mangrove conservation</td>
</tr>
<tr>
<td>P. 74</td>
<td>The roles of mangroves</td>
</tr>
<tr>
<td>P. 75</td>
<td>What are the threats?</td>
</tr>
<tr>
<td>P. 76 - 80</td>
<td>Ecological engineering techniques for mangroves</td>
</tr>
<tr>
<td>P. 81 - 95</td>
<td>Mangrove case studies</td>
</tr>
<tr>
<td>P. 96</td>
<td>Conclusions regarding mangroves</td>
</tr>
<tr>
<td>P. 98 - 103</td>
<td>6 COST AND EFFECTIVENESS OF ECOLOGICAL ENGINEERING TECHNIQUES</td>
</tr>
<tr>
<td>P. 100</td>
<td>Cost and effectiveness of ecological engineering techniques</td>
</tr>
<tr>
<td>P. 101</td>
<td>Coral reefs</td>
</tr>
<tr>
<td>P. 102</td>
<td>Seagrasses</td>
</tr>
<tr>
<td>P. 103</td>
<td>Mangroves</td>
</tr>
<tr>
<td>P. 104 - 107</td>
<td>7 CONCLUSIONS</td>
</tr>
<tr>
<td>P. 108 - 112</td>
<td>Bibliography</td>
</tr>
<tr>
<td>P. 113</td>
<td>Glossary</td>
</tr>
<tr>
<td>P. 114</td>
<td>Acronyms</td>
</tr>
</tbody>
</table>
OBJECTIVES
OF THE GUIDE
This work provides an inventory of ecological engineering techniques employed mainly in France, but also worldwide. It is devoted to the restoration of coral reefs and their associated ecosystems: seagrasses and mangroves.

It builds on two existing IFRECOR publications: “Reef restoration: Practical guide for management and decision-making”,¹ by Michel Porcher, Sandrine Job and Muriel Schrimm, published in 2003, and “Reef restoration: Concepts and guidelines”,² by Alasdair Edwards and Edgardo Gomez, published in 2007. The aim of this update is to help contracting authorities, environmental managers, project owners and research units to familiarize themselves with the techniques and to use synthetic data to propose solutions adapted for habitat restoration and selected ecological functions.
IFRECOR\(^3\) (the French Coral Reef Initiative), launched in 1999, is geared towards the sustainable management and protection of coral reefs and their associated ecosystems (seagrasses and mangroves). Over the years, with the support of the Ministries of Ecology and Overseas territories of France, IFRECOR has been able to develop a genuine network within local authorities. To this end, several partnerships were created, which today bring together research units, consulting agencies and managers of marine protected areas, in addition to academics and project owners, among others. **IFRECOR has become the leading network for exchanges among environmental stakeholders in the French Overseas Territories that have coral reefs.**

IFRECOR working groups have developed several approaches to achieve their objectives of preserving and managing these ecosystems. In particular, they wish to make elected officials, administrations, companies and the general public aware of the socioeconomic and ecological issues pertaining to these ecosystems. They also want to establish a network to monitor the state of French coral reefs. Lastly, they wish to contribute to reducing threats linked to anthropization.

To accomplish this, they developed the **MERCI-Cor\(^4\) tool**, an experimental method for evaluating ARM measures. The goal of the method is to gauge the expected ecological losses and gains for coral reefs following the implementation of development projects and related mitigation measures. **To complement this method, an ad hoc guide to ecological engineering techniques was needed.**

This guide is the result of the collaborative work of a very active community of stakeholders whose objective is to share common, updated tools for ecological engineering in reef environments in order to benefit from feedback (through the website: **www.ifrecor.fr**).

Ecological engineering encompasses all techniques and processes for solving socioeconomic and/or environmental problems through the use of living organisms or other materials of biological or non-biological origin (Moreno-Mateos et al., 2015; Pioch et al., 2018). Four technical approaches may be adopted: ecological restoration, ecological improvement or rehabilitation, creation and protection (figure 1).

1 Online guide: http://ifrecor-doc.fr/items/show/1367
3 For more information: ifrecor.fr
4 Online guide: http://www.ifrecor-doc.fr/items/show/17435
5 Note: In this example of creation, the natural host environment is not degraded but is of limited interest in terms of originality, sensitivity, heritage and ecology.
ENHANCEMENT

Assisting in restoring certain functions of a damaged ecosystem. As with restoration, rehabilitation is carried out according to a baseline condition. With rehabilitation, the emphasis is on restoring and recovering processes, and thus on the ecosystem’s productivity and services (SER, 2004).

E.g.: by transplanting species recognized as being at the root of a production process (biomass, seeding juveniles of species of fishing interest, etc.)

RESTORATION

Promoting the recovery of damaged ecosystems and restoring them to a baseline condition through natural, ecological and self-regenerating means. (SER, 2004).

E.g.: by transplanting species recognized as founders of a reference ecosystem (keystone and engineer species, etc.)

CREATION

Redirecting the ecological pathway of an environment that may have been damaged by human activity to enable the development of local ecological processes that are lacking and that differ from baseline processes. This involves introducing new biophysical processes to an ecosystem that is degraded or not naturally inclined to produce the targeted processes (SER, 2004).

E.g.: installing artificial concrete reefs on sand (the original ecosystem) in order to promote the development of species.

REALLOCATION

Protecting a given site simply by prohibiting certain activities (fishing, recreation) or by managing and controlling them. Little to no direct intervention in the natural environment.

E.g.: a measure to manage the fishing of herbivorous species helpful to the recovery of coral ecosystems.

PROTECTION

Protecting a given site simply by prohibiting certain activities (fishing, recreation) or by managing and controlling them. Little to no direct intervention in the natural environment.

E.g.: a measure to manage the fishing of herbivorous species helpful to the recovery of coral ecosystems.

Figure 1: The various ecological engineering techniques
Why restore?

Taking upstream action to tackle the direct and indirect sources of the pressures that lead to environmental degradation is a priority in integrating these ecological engineering techniques into a more holistic approach to ecosystem restoration. Without this, the effectiveness of the measures implemented cannot be maintained in the long term. According to Elliott et al. (2007), this approach, defined as “passive”, must be carried out upstream of ecological engineering actions, which are “active”. The “active” approach will be the main focus of this guide. It should be noted that, in the context of mitigation measures, regulations require a restorative approach aimed at achieving an environment equivalent to the one that was destroyed (“like for like”). In practice, although this “strict” equivalence is very rarely achieved (with all species, habitats and functions restored), ecological similitude remains the objective of the “new ecosystem” (figure 2). In general, only partial restoration of degraded ecosystems is possible (Aronson and Morenos-Mateos, 2015). Thus, users of this guide should be aware that these actions lead to a new ecosystem that is more or less similar to the reference ecosystem, and not to a return to the reference ecosystem under conditions of strict equivalence (figure 2). In some cases, “beneficial” ecological engineering actions can be used as a reason to justify future degradation.

For example, if a coral transplant is carried out under poor conditions while marine works are underway, the expected results will not be achieved. Indeed, the ecological importance of area reefs would be diminished, which could become a reason for authorizing future destruction (or poor ecological restoration) during new work. These actions should therefore take place within a controlled framework, where there is monitoring, compliance with regulations, performance evaluations before and after and action taken or sanctions imposed in case of failure (Boudouresque, 2001).

Ecosystems contribute to human well-being by providing ecosystem services (The Economics of Ecosystems and Biodiversity, 2010). Although anthropocentric, such services are an excellent vehicle for communication with policymakers and citizens. They can be divided into various categories: provisioning services (fishing), regulating services (mangroves and seagrass beds contribute to the sequestration of atmospheric CO₂) and cultural and social services (ecotourism) (The Economics of Ecosystems and Biodiversity, 2010; Pascal et al., 2016).

The cost-benefit ratio of “restoring” nature is most favourable in coastal and marine natural environments (figure 3). Indeed, in coastal ecosystems, the net benefits during the 40 years after restoration are five times higher than the initial cost (The Economics of Ecosystems and Biodiversity, 2009).

How to restore?

Ecosystem restoration is complex and risky and may be difficult to predict in the long term (Chipeaux et al., 2016). According to Clewell and Aronson (2013), it requires patience and even a kind of dedication in operators and managers. When planning a restoration project, several factors must be considered.

First, the objectives of the restoration project must be precisely stated. Their technical feasibility and the human and budgetary resources required to achieve them must then be assessed. In order to ensure effective long-term management of the restored site, the various strategies must be discussed with and communicated to all stakeholders in the territories concerned (SER, 2004). In this sector, as in many others related to environmental management, although dialogue and empathy are the keys to success, they are often neglected.

Figure 2 From a passive fight against pressures on ecosystems to active ecosystem restoration: the two approaches to restoring ecosystems, in chronological order. Note: The diagram is from an anthropocentric point of view, which does not consider natural pressures that may be exerted on the environment (Léocadie and Pioch, 2017).
Figure 3 Monetized cost/benefit analysis of the ecological restoration of terrestrial and coastal ecosystems (Pioch - adapted from The Economics of Ecosystems and Biodiversity, 2009)
REGULATORY FRAMEWORK FOR MITIGATION IN THE MARINE ENVIRONMENT
Since the 2010s, the State has shown that it has the political will to mandate the mitigation of the environmental impacts of human activity. The Act on reclaiming biodiversity, nature and landscapes (No. 2016-1087 of 8 August 2016) and Decree No. 2016-1110 (11 August 2016) amending environmental impact assessments reaffirm this will. Achieving the goal of no biodiversity loss in species, habitats and ecological functions translates into a search for equivalence in the losses and gains of development projects. The concept of ecological mitigation is also attracting interest in the scientific community. According to Dupont and Lucas (2017), it poses "legal, scientific and practical challenges".
Ecological engineering has grown rapidly over the past 20 years with the increasing demands of so-called mitigation measures. The notion of mitigation was introduced in France through Act No. 76-629 of 10 July 1976 on nature conservation, which formalizes three steps – “Avoid, Reduce, Mitigate” (ARM) – to be taken for any project that may have a negative impact on the environment (Mordaneau and Villaysack, 2012; Pioch, 2013). However, it was not until 2005 that marine ecological engineering became truly popular, with the strengthening of regulations on environmental assessments: Natura 2000 sites were extended to marine settings in 2005, and reviews were conducted respectively on the declaration and authorization procedures relating to Act No. 2006-1772 on water in 2006 and on the procedures related to protected species in 2007. The Grenelle I and II Acts in 2009 and 2010, and the 2016 Act on reclaiming biodiversity, nature and landscapes have strengthened the obligation to apply the ARM sequence and to offset any significant residual impacts.6 The 2016 Act sets the objective of “no net loss” of biodiversity (figure 4). Added to this are the European directives (the Water Framework Directive and the Marine Strategy Framework Directive)7 on “good ecological status” and “sea restoration” and the establishment of significant public funding.8 According to article R. 122-13.-I of the French Environment Code, “the purpose of mitigation measures is to counteract the significant direct or indirect negative environmental impacts of the project that could not be avoided or sufficiently reduced. They are implemented as a priority at or near the affected site to ensure that it will continue to function sustainably. They must enable preservation in general and, if possible, improve the environmental quality of sites”. These measures are taken during the implementation of plans, programmes and projects with potentially harmful effects on nature (Borderon, 2014). These measures are part of a sustainable development approach with environmental, social and ecological benefits (Ministry of Ecology, Sustainable Development, Transport and Housing, 2012). It is a preventive approach that assesses the impact of a project on the environment. Obviously, the level of mitigation required is proportional to the residual impacts (after the implementation of avoidance and reduction measures).

6 According to Act No. 2016-1087 on reclaiming biodiversity, nature and landscapes: “This principle implies avoiding damage to biodiversity and to the services that it provides; failing this, reducing the scope of such damage; and, lastly, offsetting damage that could not be avoided or reduced, taking into account the species, natural habitats and ecological functions affected.”
7 The water agencies have included restoration in their operational and financial objectives as a priority of the Water Development and Management Master Plan/water development and management plans.
8 The water agencies have included restoration in their operational and financial objectives as a priority of the Water Development and Management Master Plan/water development and management plans.
There are three categories of degradation that may require action to restore the marine environment:

1. **Authorized degradation, which is assessed ex ante, or before the fact**
2. **Unauthorized degradation with an identifiable “culprit”**
3. **Unauthorized degradation with no identifiable “culprit”**

The assessment of the last two categories is carried out ex post, or after the fact. There are thus two types of restoration:

1. **Ex ante restoration**, in the case of authorized degradation (subject to authorization under the Environment Code), as part of the mitigation measures taken within the framework of the ARM sequence (Acts No. 76-629 of 10 July 1976 and No. 2016-1087 of 8 August 2016 and articles L. 110-1 and L. 163-1 of the Environment Code).
2. **Ex post restoration** under the Environmental Liability Act (Act No. LRE 2008-757).

The aim is to offset the biophysical losses caused by respecting the principle of ecological equivalence *(qualitative and quantitative)*. The mitigation site must therefore be functionally analogous to the degraded site, i.e. must have the same ecological characteristics (the same functions, structures, compositions, etc.)(Jacob et al., 2015).
3 CORAL REEFS
Coral reefs are home to a great variety of species: as many as 600 species of corals (in the Coral Triangle) and more than 2,000 species of fish, 3,000 species of molluscs, etc. Covering a mere 0.2% of the world’s sea surface, coral reefs harbour one third of the world’s marine fauna and flora. These complex ecosystems are highly vulnerable, and many pressures can alter their ecological state in a more or less irreversible way: backfilling, overexploitation of their resources, degradation of water quality, ocean acidification, temperature increase and extreme climatic events of varying intensity.
The major challenges of coral reef conservation

Coral reefs are rigid limestone structures composed of a multitude of small, primitive animals: polyps. The latter, arranged in colonies, live in symbiosis with microalgae: zooxanthellae (figure 5). This symbiosis is essential for coral life. Indeed, the zooxanthellae produce organic molecules that account for around 80% of the coral’s food, with the remainder being drawn directly by the polyp from the environment. The microalgae produce oxygen, thus supporting the polyp’s breathing. At the same time, the removal of CO₂ by the zooxanthellae promotes the precipitation of calcium carbonate and thus the development of the coral skeleton. The zooxanthellae, meanwhile, find a stable environment within the polyp, where they are protected from variations in environmental conditions, sedimentation and predators. They also use the nitrogen and phosphate waste output of the polyp as a source of mineral elements, which are locally more concentrated than in the external environment. It is this relationship between polyps and zooxanthellae that underpins the formation of coral reefs.

Nevertheless, this symbiotic balance is extremely fragile, and the relationship is not sufficient for the proper development and survival of coral reefs. Other parameters are equally important: temperature, salinity, depth, pH and substrate. If one of these factors changes, the whole colony will be destabilized and coral construction will be disrupted.

Worldwide, coral reefs are distributed over 280,000 km² (Burke et al., 2011), or less than 0.2% of ocean area (figure 6), yet they are home to one third of marine biodiversity, or about 100,000 known species.

France has coral reefs in all three oceans (figure 7). With a total reef area spanning 60,000 km², including built and unbuilt reef surfaces (lagoons and sedimentary terraces), France ranks fourth in the world in terms of reef surface area. The Millennium Coral Reef Mapping Project made it possible to calculate the French reef surface area at 8,778 km², all oceans combined, including 4,570 km² in New Caledonia, 3,000 km² in French Polynesia, 546 km² in the Indian Ocean area and 230 km² in the Caribbean area (Andréfouët et al., 2008). The state of overseas coral reefs varies greatly: they are doing rather well in New Caledonia, Polynesia and Wallis, but not in Réunion, the West Indies, Mayotte and Futuna. The diagram on page 18 summarizes the state of the health of French marine reefs in 2015.

* For more information: http://imars.marine.usf.edu/MC/

Figure 5 Diagram of the relationship between polyps and zooxanthellae

Coral: Rigid limestone structure
Including a colony of polyps
These polyps live in symbiosis with microalgae: zooxanthellae
France is the only country to have coral reefs in all three oceans. The French built reef surface area measures 8,778 km², all oceans combined.

0.2% of the world’s ocean area is covered by coral reefs.

275 million people live in the immediate vicinity of coral reefs (Burke et al., 2011).

Ecosystem services associated with coral reefs provide US$ 375 billion per year* in benefits.

*Note: The methods for calculating French and American data may differ.

1/3 of marine biodiversity
Summary of the health of French coral reefs in 2015¹⁰
(Quod J.P. and Malfait G., 2016)

Guadeloupe
Since 2002, a decrease in coral cover has been observed, exacerbated by a major bleaching episode in 2005.

Saint Barthelemy and Saint Martin
In 2005, a rise in ocean temperature led to massive coral bleaching, bearing in mind that coral cover on these islands has never exceeded 26%.

Note: In 2017, Hurricane Irma caused significant damage to the coral reefs of these islands.

Martinique
A general decrease in coral cover has been observed, along with an increase in macroalgal cover. However, it has been observed that the level of cover has stabilized at 20% on some sites. On one site, the level of cover even stands at 60%.

Réunion
Since 2003, a clear decrease in coral cover has been observed, with opportunistic algae taking its place.

Scattered Islands (Indian Ocean)
The Islands have high biodiversity and healthy coral reefs.

Wallis
Good reef health despite a significant bleaching episode observed in 2015.

New Caledonia
80% of the reefs studied are in a “good to satisfactory” state of health, whereas only 7% are in a poor state of conservation.

French Polynesia
Good health at the national level, although the coral cover varies greatly depending on location.

Mayotte
The evolution of the reefs is characterized by fluctuating trends, with a strong decrease in the rate of coral cover between 1989 and 2004, then an increase since 2004.

Futuna
Poor health because, in the absence of a lagoon, the island is subject to natural and anthropogenic pressures.
The roles of coral reefs

Reefs perform a multitude of functions. As habitat builders, they act as shelters, house a high level of biodiversity and serve as nurseries for juveniles and as food for many species. They bring numerous benefits to a billion people. They provide a range of ecosystem services:

Fishing
Coral reefs provide a source of income from the biomass production associated with them. Thus, fishing activity, whether commercial or recreational, is very strongly linked to the presence of these reefs. Coral reefs play a key role in the subsistence economy of the regions where they are found.

Tourism
The lush beauty of these reefs and the diversity of reef organisms attract more than one million people to the French overseas territories per year (Quod and Malfait, 2016).

Protection
The presence of reefs close to the shore helps to reduce damage to coastal facilities from repeated wave action or cyclonic events. It is estimated that reefs absorb up to 97% of wave energy (Ferrario et al., 2014). Reefs also counteract coastal erosion (Wells and Ravilious, 2006).

Culture and traditional beliefs
Corals are an integral part of many cultures. In southern Kenya, for example, coral reefs are used in religious rites to appease spirits (Moberg and Folke, 1999).

Pharmacology
Chemical compounds from corals and other reef organisms have pharmacological potential in the treatment of cancers and cardiovascular diseases, for example. The calcareous skeleton of corals can also be used as material for bone grafts because of its similarity in composition to the human skeleton.

Coral reefs are therefore of unquestionable value in maintaining marine ecological equilibrium and, by extension, for the well-being of mankind.
WHAT ARE THE THREATS?

Although coral reefs remain extensive, their survival depends on a delicate balance. They are now among the most threatened ecosystems. In 2008, a review of the health of the world’s coral reefs (Wilkinson, 2011) showed that:

- 20% of coral reefs are already irrevocably destroyed or have little chance of recovery
- 25% are in critical condition
- 25% are threatened
- 30% remain in satisfactory condition

According to recent studies (Burke et al., 2011), 90% of all coral reefs worldwide will be threatened with extinction by 2030. There is a direct or indirect connection between humans and the health of reef ecosystems. Threats to coral can have different origins: a direct anthropogenic origin, but also a natural origin (including extreme climatic events, temperature rise and ocean acidification). The impact of human activities affects the intensity of threats of natural origin, notably by accelerating and exacerbating climate change.

EXAMPLES OF DEGRADATION OF ANTHROPOGENIC ORIGIN

Land-use planning
- Dredging: destruction, landscape degradation, modification of current patterns
- Urbanization: hypersedimentation, landscape degradation, soil sealing
- Backfilling: destruction, hypersedimentation, landscape degradation, mechanical habitat alteration

Wastewater discharges
- Nutrient supply: algal bloom, eutrophication
- Chemicals: poisoning, bioaccumulation, biomagnification
- Sediment supply: asphyxia and reduction in photosynthesis

Agricultural, industrial and port activities
- Emissions: degradation of various kinds depending on the type of emission
- Oil exploitation: poisoning, bioaccumulation, biomagnification
- Exotic species: decline and disappearance of species, epizootics

Sea-related activities
- Overexploitation of resources: depletion of stocks
- Anchoring of boats, trampling: mechanical habitat alteration
- Beach overcrowding: wildlife disturbance, sunscreens
- Coral mining: mechanical habitat alteration

Household waste
- Microplastics: intoxication, bioaccumulation
- Chemicals: poisoning, bioaccumulation, biomagnification
- Nutrient supply: algal bloom, eutrophication
WHAT ARE THE CONSEQUENCES?

The causes of coral reef degradation are legion. Generally, they are cumulative and their impact is multiplied within the same ecosystem by synergistic effect, with often irreversible consequences for the reefs and the biodiversity that depends on them.

Bleaching

The accumulation of anthropogenic and natural impacts weakens and destabilizes these ecosystems. The stress caused by temperature rises results in an increase in the photosynthetic activity of the zooxanthellae. This stress leads the polyps to reject their microalgae, causing a halt in growth and reproductive activity. If conditions return to normal, polyp-zooxanthellae symbiosis becomes possible once more. On the other hand, if the stress persists, the partial or total death of the colony will be guaranteed. The development of algal turf reflects the irreversible nature of the situation. The increase in temperature and dissolved carbon dioxide induced by the increase in human activity modifies the living conditions of the coral reefs (Hughes et al., 2003). In 2016, according to Hughes et al. (2017), only 8.9% of the 1,156 reefs of the Great Barrier Reef escaped without bleaching (figure 8). Veron et al. (2009) estimate that, by 2030–2040, the amount of CO₂ in the oceans will be 450 ppm, leading to high global coral mortality (figures 9 and 10). Other factors may be responsible for coral bleaching, such as decreasing salinity or excessively high pollution levels.

Figure 8 Extent of coral bleaching in the Great Barrier Reef (Australia) (Hughes et al., 2017)
Loss of biodiversity and resilience
The death of coral reefs is accompanied by a net loss of biodiversity. The organisms associated with them will either disappear or migrate to areas more suitable for their development. The return to a normal dynamic balance is compromised.
Socioeconomic consequences

Many coastal populations depend on these reefs socioeconomically (figure 11), whether for tourism, fisheries or coastal protection. The number of countries and territories that depend significantly on coral reefs is estimated at 108 (Burke et al., 2011). If the reefs disappear, a billion people will be directly affected (Salvat and Rives, 2003). According to Edwards and Gomez (2007), this would equate to a total economic loss of US$ 375 billion per year.

The loss of coral diversity and, more broadly, the resultant global loss of biodiversity, could lead to catastrophic economic and societal consequences for the areas concerned.

Figure 11 Economic and social dependence of coastal populations on coral reefs: fisheries, food, tourism and coastal protection (Burke et al., 2011).

Figure 12 Coral bleaching ©JBfotoblog Getty images
Over the past 20 years, several ecological engineering techniques have emerged for coral reefs. The most commonly used techniques are defined in the section that follows. The descriptions are illustrated with some examples of projects from around the world.

- page 25 Transplantation
- page 26 Electrodeposition
- page 27 Coral gardening
TRANSPANTATION

Technique used when the degraded site fails to recover naturally (Abelson, 2006). The method involves removing colony fragments from a donor site (or coral gardening) and replanting them in a receptor site.

Advantages
1. Increase in biological diversity (Abelson, 2006).
2. Immediate increase in coral cover (Abelson, 2006).
3. Immediate improvement in the aesthetics of the receptor site (Abelson, 2006).

Disadvantages
2. Fragility of the fragments during wave action (Abelson, 2006).
3. Decrease in the fertility of individuals due to the stress of transplantation (Abelson, 2006).
4. Fairly labour-intensive and the associated costs may be high (Gleason et al., 2001).

Coral cuttings transported by boat ©Quod
Jean-Pascal, "Bouturage coraux 2004 - La Réunion 1,” ("Coral cutting 2004 - Réunion 1") IFRECOR document

*Average calculated from the data available for follow-up periods of three years or more. These values should be treated with the utmost caution. The reader is invited to refer to page 101 of the guide.

** Figures provided for information purposes only.
Electrodeposition is a mineral accretion technique by seawater electrolysis. The minerals present in the water precipitate onto a metal support under the action of an electric current. The growth of the calcareous skeleton is thus promoted, reinforcing the bonding of the coral to the substrate (Sabater and Yap, 2002).

Advantages

1. Firmly attached coral allocates more energy to lesion recovery and growth (Sabater and Yap, 2002).
2. This technique increases survival rates and resistance to stress (Sabater and Yap, 2002; Goreau, 2014).

Disadvantages

1. The effectiveness of electrodeposition depends on the species that is being stimulated. For example, it does not work with Pocillopora damicornis (Schuhmacher et al., 2000).
2. The installation must be checked frequently to avoid voltage issues, among others (Goreau, 2014).
3. Electrical stimulation can favour one species but inhibit another at the same time (Goreau, 2014).

* Average calculated from the data available for follow-up periods of up to two years. These values should be treated with the utmost caution. The reader is invited to refer to page 101 of the guide.
CORAL GARDENING

A coral gardening is used to grow coral larvae or fragments before transplanting them to a receptor site.

Advantages

1. Allows for coral fragments to be grown in large numbers (Levy et al., 2010).
2. Controlled cultivation maximizes the survival rate and productivity of the fragments (Amar and Rinkevich, 2007; Johnson et al., 2011).
3. Easy to build and inexpensive: possibility of using salvaged materials (Levy et al., 2010; Mbije et al., 2010).
4. Using multiple types of nursery on a site reduces the risk of losses (Johnson et al., 2011).

Disadvantages

1. Regular monitoring is necessary: if the colonies grow too much, there is a risk of platform collapse and of algal blooms (Johnson et al., 2011).
2. In some nurseries with a high density of cuttings with little genetic diversity, there is a greater risk of epizootic disease and mass mortality (Ladd et al., 2016).

Rope nursery
System of ropes anchored to the substrate and suspended by floats, on which the coral fragments are placed (Levy et al., 2010; Johnson et al., 2011).

Table nursery
Coral fragments are placed on ropes stretched to attach to crossbars, which form a “table” (Levy et al., 2010; Mbije et al., 2010).

Block nursery
Coral fragments are secured to a cement slab anchored to the sea floor (Johnson et al., 2011).

Frame nursery
Coral fragments are placed on metal, plastic or PVC mesh frames anchored to the sea floor.

Average calculated from the data available for follow-up periods of three years or more. These values should be treated with the utmost caution. The reader is invited to refer to page 101 of the guide.
CORAL REEF CASE STUDIES

P. 30 - 31 Coral transplantation in Prony Bay
P. 32 - 33 Coral transplantation in Faa’a Lagoon
P. 34 - 35 Coral transplantation on Mbudya Island
P. 36 - 37 Coral transplantation in Balhaf (southern Yemen)
P. 38 - 39 Coral transplantation in Pointe-à-Pitre Bay
P. 40 - 41 Coral transplantation on artificial reefs ("Sulu-Reef Prostheses") in Shark Fin Bay
P. 42 - 43 Coral gardening in Bolinao
P. 44 - 45 Coral gardening in Zanzibar and on Mafia Island
P. 46 - 47 Coral gardening in Le Diamant
P. 48 - 49 Coral gardening in Caye à Dupont
P. 50 - 51 Coral cutting in southern Yemen for replanting on virgin substrate
Objective

This coral biotope restoration project was carried out on three different sites:

1. site 1: Montravel, sheltered
2. site 2: Montravel, exposed
3. site 3: Casy

The aim was to offset the impact of a port construction project on the coral reefs. An area of 2,000 m² was used to house the transplants.

Technique

The corals were removed by scuba divers using hammers and chisels. Colonies were arranged by genus in crates (to avoid negative interactions between organisms). The corals were transported in the open air, by boat, as the distance to the receptor sites was considered short enough (20-30 mins). The corals were watered continuously with seawater. The colonies were attached with a quick-setting cement (12 hours). A total of 1,762 colonies were moved during the project.

The choice of receptor sites was based on their having different parameters: physico-chemical, substrate, etc., so as to enable a comparison of the survival and adaptation of the transplants under different environmental conditions.

Cost

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and equipment</td>
<td>€13,674.97</td>
</tr>
<tr>
<td>Salaries</td>
<td>€36,198.45</td>
</tr>
<tr>
<td>Total</td>
<td>€49,873.42</td>
</tr>
<tr>
<td>Total per m²</td>
<td>€24.94/m²</td>
</tr>
</tbody>
</table>

Project carried out in Prony Bay, New Caledonia. Ordered by the Goro Nickel mining company and managed by Soproner-Ginger.
Environmental monitoring

There were several days of follow-up: an initial day of follow-up, another day one month after transplantation, and then one day every six months for five years for a total of 10 follow-up days over five years.

There were two different types of follow-up: ➊ Simple follow-ups, once a year in July/August. To measure the survival rate, mortality, growth, site maintenance (cleaning, predator control). ➋ Comprehensive follow-ups, once a year in January/February. To assess the adaptation of the transplants to their new environment, their attachment, colonization, etc.

The causes of mortality in transplanted corals can be many: natural predation, transplantation stress, competition, diseases, environmental conditions, etc. Regarding the transplantation in Prony Bay, a low mortality rate was observed. In fact, the transplant survival rate was in excess of 80% for the three sites considered (figure 2). For the recovery rate, see figure 3: an average 30% increase in surface area was observed, depending on the site.

Note: The recovery rate includes the growth of the transplants and the natural coverage at the site.

Success rate (%): >80%
Duration of experiment (including follow-up): 6 years

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
</tbody>
</table>

C1: Creation/restoration of the environment
Project aimed at creating a habitat on a site where there was not one initially

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal technique</td>
<td>removal of coral fragments</td>
</tr>
<tr>
<td>Attachment technique</td>
<td>bonding with quick-setting cement</td>
</tr>
<tr>
<td>Means of transportation</td>
<td>by ship, stowed in crates</td>
</tr>
<tr>
<td>Transportation time</td>
<td>20–30 mins</td>
</tr>
</tbody>
</table>

Assessment

During almost five years of follow-up, the transplantation operation was objectively observed to have been an overall success, demonstrating this choice of transplantation technique to be effective and suitable.

The results four and a half years later:

<table>
<thead>
<tr>
<th>SITE 1</th>
<th>SITE 2</th>
<th>SITE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVING</td>
<td>PARTIAL MORTALITY</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
<td>83%</td>
</tr>
<tr>
<td>5%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>4%</td>
<td>5%</td>
<td>11%</td>
</tr>
<tr>
<td>28%</td>
<td>32%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Figure 2: Survival rate, partial mortality and mortality (t=4.5 years)

<table>
<thead>
<tr>
<th>SITE 1</th>
<th>SITE 2</th>
<th>SITE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=0</td>
<td>T=4.5 YEARS</td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>5%</td>
<td>11%</td>
</tr>
<tr>
<td>28%</td>
<td>32%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Figure 3: Live coral recovery rate (t=year 0 and t+4.5 years)

Références

The aim of the project was to recreate a coral area in the lagoonarium. The reserve had experienced a mass mortality event owing to a malfunction of the water supply pumps, leading to a decrease in the oxygenation of the site.

Through the project, the InterContinental Hotel hoped to:
1. Create a living area consisting of coral nurseries and a nursery area
2. Improve the appearance of the hotel’s lagoonarium
3. Raise awareness among hotel guests

The coral transplantation technique was applied to 10 types of coral, namely: Acropora sp., Cyphastrea sp., Fungia sp., Herpolitha sp. (free-living coral), Montipora sp., Pavona sp., Pocillopora sp., Porites sp., Psammocora sp. and Synarea sp. These species of coral were chosen on the basis of their appearance (colour, shape and structure).

The process of recreation was carried out in two phases:

1. Physical recreation
 The coral garden on the site was redeveloped. The artificial reef blocks (Reef Balls) were moved and prepared for use as supports during the transplantation.

2. Biological recreation
 To minimize the impact on the donor site, the collection area for coral fragments was extensive. Removal from the natural environment was done in such a way as to cause as little harm as possible to the donor site, with preference being given to corals that were already broken, displaced or destined to be destroyed. All the fragments were transported by boat (underwater for the massive corals and in the open air for the branching, encrusting and foliaceous corals). The maximum distance travelled between the donor site and the receptor site was one kilometer in order to reduce transportation stress. The fragments were then attached to the Reef Balls.
Monitoring was carried out over a period of several years. This involved replacing dead or damaged corals, removing harmful species and monitoring the balance in the area, with particular attention being paid to the operation of the circulation pumps.

After a few weeks, a 95% survival rate as the transplants had acclimatized well. Only a few massive corals succumbed to the stress of transplantation and did not survive. Medium- and long-term survival rates were not reported.

<table>
<thead>
<tr>
<th>Success rate (%): N/A</th>
<th>Duration of experiment (including follow-up): several years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence phase</td>
<td>A R M</td>
</tr>
<tr>
<td>Type of measure</td>
<td>Restoration Rehabilitation Creation</td>
</tr>
</tbody>
</table>

Project aimed at providing for or implementing one of the above measures (Restoration-Rehabilitation-Creation)

Technical factors affecting risk:

Species transferred Removal technique	10 removal of coral fragments that were already broken, displaced or destined to be destroyed not specified submerged beneath a boat for the massive corals and in the open air for the branching corals 10 mins minimum
Attachment technique Means of transportation	
Transportation time	

References

Te mana o te moana, Petit M., Chevalier F., Rapport final d’activités : Création d’un jardin de corail artificiel au sein du Lagoonarium de l’InterContinental Tahiti Resort [Final activity report: Creation of an artificial coral garden within the lagoonarium of the InterContinental Tahiti Resort]. August 2011
The objective of the transplantation was to rehabilitate/restore reef areas degraded by blast fishing. 500 coral fragments were transplanted by local fishermen to the north-west and south-west coasts of Mbudya Island. The technique involved taking fragments from healthy colonies in the vicinity of the degraded sites and then attaching the fragments to the substrate using plastic plates and cement. On average, one plate could hold five fragments.

Three months after the coral transplantation, the fishermen measured the survival rate and health status of the transplants.

Objective

The objective of the transplantation was to rehabilitate/restore reef areas degraded by blast fishing.

Technique

500 coral fragments were transplanted by local fishermen to the north-west and south-west coasts of Mbudya Island. The technique involved taking fragments from healthy colonies in the vicinity of the degraded sites and then attaching the fragments to the substrate using plastic plates and cement. On average, one plate could hold five fragments.

Coral transplantation carried out on Mbudya Island, Tanzania, by local fishermen.

Photograph illustrating a transplantation. Note that this is not from the project described.
Success rate (%): between 70 and 100%

Duration of experiment (including follow-up): approx. 8 months

Sequence phase A R M

Type of measure Restoration Rehabilitation Creation

C2: Project in an environment degraded by man or by natural evolution, aimed at changing the environment to a state more favourable to its proper functioning or to biodiversity, requiring work.

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal technique</td>
<td>removal of coral fragments</td>
</tr>
<tr>
<td>Attachment technique</td>
<td>plastic plates and cement</td>
</tr>
<tr>
<td>Means of transportation</td>
<td>N/A</td>
</tr>
<tr>
<td>Transportation time</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Results

Of the 500 initial fragments, only 342 were randomly selected for follow-up. Galaxea sp. had a 100% survival rate, even after eight months (figure 1). However, for the other species, the survival rates were poorer, but relatively high, ranging from 70 to 90% after eight months (figure 1). These results are thought to be attributable to the action of the swell on the fragments. The transplantation method used seems to have been effective nonetheless.

References

The construction of the onshore LNG plant involved some offshore development, namely the construction of seawalls, trenches and shoreline riprap, which would result in the destruction of existing corals. The objective of the operation was to remove these coral colonies and place them in a suitable area so as to preserve them.

Objective

The construction of the onshore LNG plant involved some offshore development, namely the construction of seawalls, trenches and shoreline riprap, which would result in the destruction of existing corals. The objective of the operation was to remove these coral colonies and place them in a suitable area so as to preserve them.

Technique

1. The first step is to make an inventory of the corals suitable for relocation according to criteria related to the health of colonies and their size, and then to identify the receptor site on the basis of its ecological characteristics.
2. The second step is to collect the corals. This work is done using a hammer and chisel for medium-sized colonies, taking care not to touch the living parts of the colony. Large colonies are removed with specially developed tools. Massive colonies are stored underwater in a steel cage, lifted by parachutes. They are then towed to the receptor sites.
3. The third step is to reattach the colonies in their new environment. Once positioned, the colonies are glued with a cement containing an additive that allows them to set quickly.
4. The last step is to create a detailed map of the transplanted colonies to establish a baseline status for monitoring purposes.
Observations
Transplantation operations are cumbersome and require a team of scientific divers and technical scuba divers. Between 50 and 100 corals can be moved in one day (about one month is needed to transfer 1,000 corals, including time for mobilization and organization). The team is composed of two groups of four divers each, with at least one scientific diver per group. Commercial divers are particularly useful for transporting very large and heavy colonies, which ensures the safety of the operations.

Results
A total of 1,500 colonies were moved to four different sites. Among these were 140 colonies of Porites weighing more than one tonne. Only the most sensitive and healthy corals were collected, including 100% of the Acropora downingi, Lobophyllia hemprichii, Lep-toria phrygia and Goniopora lobata. The coral colonies were relocated, taking care to recreate a natural environment in terms of density, diversity and topology. The results of the transplantation operations were more than satisfactory. The overall survival rate of the transplanted colonies reached 95% in October 2007, but decreased slightly thereafter owing to the residual effects of the marine works. After two years, 79% of the colonies had survived (figure 1).

![Coral survival rates.](image)

Lessons learned
The relocation of corals does not make it possible to establish a new ecosystem. While the operations themselves reduce individual coral mortality, they do not prevent total habitat loss, and they should be used only as a last resort.

Technical parameters:
- 1,500 colonies moved
- 70% to 100% of the corals present were transferred
- Donor sites spanning 1,553 m²
- Colonies weighing between one kilogram and four tonnes
- 120-day operation involving eight divers

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>>24 removal of coral fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment technique</td>
<td>bonding with quick-setting cement</td>
</tr>
<tr>
<td>Means of transportation</td>
<td>by boat, avoiding contact with the open air by means of a system comprising a steel cage and parachutes</td>
</tr>
<tr>
<td>Transportation time</td>
<td>N/A</td>
</tr>
</tbody>
</table>

References
As part of works to extend the port of Jarry within the Grand Port Maritime de la Guadeloupe, a port hub had to be created to improve the entrance channel and create a second terminal covering an area of 10 hectares. However, the works to improve the entrance channel would directly affect the corals located at Caye Sans Nom and east of Îlet à Cochons, destroying them by mechanical means. The port wished to relocate and transplant the majority of the coral colonies to areas of Pointe-à-Pitre Bay not affected by the works.

The method for transplanting the corals was broken down into two phases:

Project feasibility study performed beforehand:
- Determine which of the different species were to be transplanted, how many there were, and how their health was
- Draw up layout plans for the donor sites by selecting the areas of ecological interest of the colonies to be transplanted and of the receptor sites
- Specify, confirm and optimize the transplantation techniques chosen according to the areas selected, the size of the colonies and the substrate, and define precisely how the work was to be carried out
- Plan the work, establishing the phases
- Check how well the coral would stand up to transplanting under possibly turbulent conditions
- Propose coral monitoring and establish the baseline status of the receptor sites and associated fish populations.

Coral transplantation:
- Delimit and precisely mark out the working areas
- Collect the corals from each donor site in order to transport them to the relevant receptor site
- Transfer the collected coral colonies to the receptor sites for replanting
- Attach the collected coral colonies to the receptor sites
- Mark the colonies for long-term monitoring and position the scientific monitoring transects.

Objective

As part of works to extend the port of Jarry within the Grand Port Maritime de la Guadeloupe, a port hub had to be created to improve the entrance channel and create a second terminal covering an area of 10 hectares. However, the works to improve the entrance channel would directly affect the corals located at Caye Sans Nom and east of Îlet à Cochons, destroying them by mechanical means. The port wished to relocate and transplant the majority of the coral colonies to areas of Pointe-à-Pitre Bay not affected by the works.

Technique

The method for transplanting the corals was broken down into two phases:

Project feasibility study performed beforehand:
- Determine which of the different species were to be transplanted, how many there were, and how their health was
- Draw up layout plans for the donor sites by selecting the areas of ecological interest of the colonies to be transplanted and of the receptor sites
- Specify, confirm and optimize the transplantation techniques chosen according to the areas selected, the size of the colonies and the substrate, and define precisely how the work was to be carried out
- Plan the work, establishing the phases
- Check how well the coral would stand up to transplanting under possibly turbulent conditions
- Propose coral monitoring and establish the baseline status of the receptor sites and associated fish populations.

Coral transplantation:
- Delimit and precisely mark out the working areas
- Collect the corals from each donor site in order to transport them to the relevant receptor site
- Transfer the collected coral colonies to the receptor sites for replanting
- Attach the collected coral colonies to the receptor sites
- Mark the colonies for long-term monitoring and position the scientific monitoring transects.
Success rate (%): 72.6%

Duration of experiment (including follow-up): 4 years

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>Type of measure</th>
<th>Technical factors affecting risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Restoration</td>
<td>Species transferred</td>
</tr>
<tr>
<td>R</td>
<td>Rehabilitation</td>
<td>Removal technique</td>
</tr>
<tr>
<td>M</td>
<td>Creation</td>
<td>Underwater transportation technique:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attachment technique</th>
<th>Means of transportation</th>
<th>Transportation time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

The results of the transplantation operations revealed a survival rate at \(t+3.5 \) years of 72.6% (figure 1)

Figure 1 Colony survival rate (%) from March 2015 to January 2019.

Lessons learned

The transplantation made it possible to relocate massive coral colonies that were going to be destroyed by the levelling of two shoal areas. This loss of habitat was mitigated by the relocation. The maintenance of coral cover demonstrated that the methods used had been effective and that the receptor sites had been well chosen. However, the impact of the coral transplantation, three and a half years after the work, is not yet detectable on these sites in terms of recovery and numbers of juvenile corals.

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>Removal technique</th>
<th>Underwater transportation technique:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Attachment technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

1 Créocéan, Guadeloupe Port Caraïbes - Coral transplantation to mitigate dredging impacts on coral reefs for a port extension project. Guadeloupe, French West Indies - 13th International Coral Reef Symposium, 19–24 June 2016 - Honolulu, Hawaii.
3 Créocéan – Travaux de transplantation de coraux – Grand Projet de Port. [Coral transplantation – Major port project.]
Objective

Increase the resilience and reduce the recovery time of unstable corals located on coral debris, remnants of reefs blown up by blast fishing. The study covers four sites and 1,647 transplanted coral colonies.

Technique

The project began in 2016 with four restoration sites selected because of their high coral mortality and structural weakening. Sulu-Reef Prostheses (SRPs) were created and manufactured by the Sulubaaï Environmental Foundation (figure 1). They are made of reinforced concrete and are available in three sizes: SRP 1,000 (0.91 m²), SRP 700 (0.87 m²) and SRP 450 (0.73 m²). They are composed of two parts manufactured on site. Between 8 and 12 coral fragments are attached to the top and sides of each SRP with steel bars (figure 2). The evolution of the ecological volume of the coral fragments was analysed at three of the four restoration sites. At each of these three sites, 60 coral fragments were randomly selected for attachment to the 15 SRPs at the site. Ecological volume monitoring was performed for a total of three sites * 15 SRPs * four fragments = 180 coral colonies (figure 3). The monitoring was conducted once a month. The measurements required to calculate the ecological volume were recorded from photographs taken in situ. The photos were obtained by diving with a camera equipped with a 30 cm stand displaying a ruler (for calibration of the measurement). The attachment of the corals and their colours were observed in situ with the naked eye. The measurements required to calculate the ecological volume were taken using ImageJ software: length, width and height. The volume was calculated using the formula of Frias-Torres et al., 2018. The initial values were used to divide the coral fragments into three size categories: small (volume <21 cm³), medium (volume between 21 and 215 cm³) and large (volume >215 cm³). The analysis covers volumes calculated 3, 6 and 12 months after the date of attachment of the fragments to the SRPs.
Success rate (%): 76%
Duration of experiment (including follow-up): 1.5 years

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
</tbody>
</table>

Cl: Creation/restoration of the environment
Project aimed at creating a habitat on a site where there was not one initially

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Type</th>
<th>(\text{Attachment technique})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal</td>
<td>restoration coral fragments</td>
</tr>
<tr>
<td>No transfer or removal from the water</td>
<td>twisting of a steel bar to wedge the fragment onto the cement SRP</td>
</tr>
<tr>
<td></td>
<td>the corals are collected and attached directly on site by divers</td>
</tr>
</tbody>
</table>

Results

From 2017 to 2019, more than 200 SRPs were positioned at four sites in the damaged Pangatalan reef for a total of 1,647 coral fragments (figure 4) from 28 species. SRPs are highly adaptable, enabling the attachment of corals of all shapes (branching, massive or fine).

After 12 months, the cumulative survival rate of the corals transplanted onto the SRPs was 76.6% and the attachment rate was 71%: 14.3% on the concrete part, 27.3% on the steel bar and 29% on both parts (steel bar and concrete). The ecological volumes of the branching and fine corals are growing exponentially, with the bushy branching varieties being the most successful. The massive varieties exhibited a progressive variation in ecological volume at 3, 6 and 12 months, with no clear differences over time (figure 5).
The aim of the experiment was to find a viable and effective solution for future reef restoration work through the use of three types of rope nursery.

Three types of rope nursery were tested. The nurseries were placed at a sufficient water depth to avoid the effects of tides and above the substrate to avoid sedimentation. The sites were chosen on the basis of their environmental quality, as they were sheltered from thunderstorms and swells.

Objective

The aim of the experiment was to find a viable and effective solution for future reef restoration work through the use of three types of rope nursery.

Technique

Three types of rope nursery were tested. The nurseries were placed at a sufficient water depth to avoid the effects of tides and above the substrate to avoid sedimentation.

Type I

Floating rope nurseries

The coral fragments were positioned below the surface buoys, which meant that the swell had an impact on them.

Type II

Floating rope nurseries suspended above the sea floor

The coral fragments were connected to ropes stretched between sinkers and buoys. With levels stacked on top of one another, this type of nursery saved space. It also protected the fragments from the swell. A total of 1,191 coral fragments were cultivated.

Type III

Nurseries fixed to the sea floor

The coral fragments were placed on ropes stretched and held in place by crossbars. The whole structure was fixed onto a sandy substrate. This type of structure was suitable for all types of hydrodynamics.
Results

The rope nursery concept was developed into a reef restoration technique. The fragments grew successfully (table 1, figure 2). The nurseries proved to be inexpensive and very quick to set up, making it possible to design this type of nursery on a larger scale.

Success rate (%): between 51 and 100%

Duration of experiment (including follow-up): approx. 1 year

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
<tr>
<td>Project aimed at providing for or implementing one of the above measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Restoration-Rehabilitation-Creation)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal technique</td>
<td>removal of coral fragments</td>
</tr>
<tr>
<td>Attachment technique</td>
<td>small coral fragments inserted in the coil of a rope</td>
</tr>
<tr>
<td>Means of transportation</td>
<td>N/A</td>
</tr>
<tr>
<td>Transportation time</td>
<td>N/A</td>
</tr>
</tbody>
</table>

References

Establishment of coral nurseries for the University of Haifa (Israel) according to the concept of "coral gardening".

Project Creation of a coral gardening in Zanzibar and on Mafia Island
Site Zanzibar and Mafia Island
Species Staghorn coral (*A. formosa*), cream coral (*A. nasuta*), *A. hemprichii*, rasp coral (*P. verrucosa*), *P. cylindrica*, fire coral (*Millepora sp.*)

Surface area N/A
Success rate Between 85 and 100%
Cost €2,148.40 per 10,000 fragments excluding labour
Year 2007
Field officer Mbije et al., 2010.

Objective

The aim of the experiment was to find a viable and effective nursery method for future reef restoration work.

Cost

The total cost for the 21,600 coral fragments was estimated at €2,148.40 excluding labour.

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Zanzibar</th>
<th>Mafia Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staghorn coral</td>
<td>1296</td>
<td>1728</td>
</tr>
<tr>
<td>Cream coral</td>
<td>1296</td>
<td>1728</td>
</tr>
<tr>
<td>A. hemprichii</td>
<td>1872</td>
<td>2304</td>
</tr>
<tr>
<td>Rasp coral</td>
<td>1296</td>
<td>2304</td>
</tr>
<tr>
<td>P. cylindrica</td>
<td>2304</td>
<td>2304</td>
</tr>
<tr>
<td>Fire coral</td>
<td>1440</td>
<td>1728</td>
</tr>
</tbody>
</table>

TOTAL 9 504 12 096

Note: (*) The use of reusable materials resulted in lower costs.

Tables measuring 6 m² were made using one-metre-long PVC tubes, assembled end to end, and nylon cables (photos 1 and 2). The nurseries were built in collaboration with local fishermen. The installation sites were chosen based on local environmental conditions:

➊ Sheltered areas
➋ At a depth of four metres (to avoid accidental damage)

A total of 21,600 fragments were planted on the nurseries at the Zanzibar and Mafia Island sites (table 1). The fragments were cultivated for nine months.

Table 1 Number of coral fragments by installation site.
Results

Nine months after the fragments were attached to the nurseries, the survival rates of the species concerned were found to be relatively satisfactory at the Zanzibar site (between 85 and 100%). In contrast, on Mafia Island, survival rates were between 60 and 100% (figure 3). Nursery cultivation yielded satisfactory results for the fire coral (100% success rate).

For the other species, the mortality rate was generally low (between 60% and 95%). There were a couple of unfortunate reasons for this mortality: ➊ Poaching ➋ Stress due to fragmentation and the transportation of the fragments.

The fragments were observed to have grown fairly rapidly over the nine months (figures 2 and 4), by up to 9 cm in the case of the staghorn coral. This study demonstrated the effectiveness of nurseries for growing small coral fragments. The technique used proved to be practical for producing a large number of colonies in under a year and at a lower cost.

References

The aim of the project was to counteract the decline observed in recent decades in the populations of Acropora sp. in the Caribbean. The creation of nurseries is one of the solutions envisaged to enable the recolonization of coral reefs in the Sainte-Luce area. The mission was also aimed at testing methods for growing coral cuttings on two species: staghorn coral (Acropora cervicornis) and elkhorn coral (A. palmata).

The technique developed by L’ASSO-MER was to duplicate using cuttings. Small fragments of coral were collected from a mother colony on the Atlantic coast and then placed in a nursery in the commune of Le Diamant. Three tree nurseries were built to implement this technique with the help of PVC tubes and purchased cuttings. The nurseries were weighted down with pieces of recycled concrete. The coral cuttings were attached to the PVC tubes with nylon thread. The attachment of the cuttings started at the end of 2015. A total of 54 staghorn coral cuttings and seven elkhorn coral cuttings were planted on the trees.

According to Alexandre Arqué (director of L’ASSO-MER), elkhorn coral must be bonded to a hard, non-wire support (concrete blocks). Several types of glue should be tested. The growth rate for the staghorn coral, meanwhile, was very good. The cutting of this species was a success.

The environmental conditions at the site were ideal. The nursery area needed to be protected to avoid damage, particularly from fishing. At present, the tree nurseries are full and the cuttings are waiting to be transplanted in their natural environment. This phase takes time because authorizations linked to the protected status of the species in question are required.
Eleven trips have been made to the nursery in one year to maintain the cutting equipment and monitor the progress of a few cuttings.

The results of the experiment have been highly satisfactory with regard to the staghorn coral. In one year, the number of cuttings has increased fivefold, from 54 to the present total of 294. For the elkhorn coral, the number of cuttings has not increased because this species does not develop well in tree nurseries.

Some regrettable incidents:

1. The displacement of a tree caught in a fishing net.
2. The death of some cuttings due to stress during the cutting process.
3. The detachment of a float causing one of the trees to fall.
4. The glue used to attach the cuttings to some concrete blocks was not suitable.

The purpose of this project is not environmental mitigation. Rather, the project is aimed at managing two species classified as critically endangered, and in particular at reintroducing colonies off the Caribbean coast of the island, where they have almost disappeared. Its aim is not to restore the reef habitat directly based on traditional objectives of biodiversity, functionality, surface area and productivity.

References

2. Interview with Alexandre Arqué (director of L’ASSO-MER)
In response to the critical danger of extinction faced by two endemic coral species, namely staghorn coral (*Acropora cervicornis*) and elkhorn coral (*Acropora palmata*), a project was launched to create a coral gardening. The aim was to produce “cuttings” that could be transplanted in the reefs off Guadeloupe in order to strengthen existing populations.

The construction of the nursery began in 2016. To establish a nursery suitable for the cultivation of these two species of coral, fragments were collected in natura from the reefs of the Petit Cul-de-Sac Marin. The cuttings were then hung from the “branches” of a PVC structure installed in the water column. After a growth phase of 8 to 12 months, the cuttings were divided again in order to increase the number of corals growing in the nursery. Eventually, the fragments will be transplanted in severely degraded reefs.

Objective

In response to the critical danger of extinction faced by two endemic coral species, namely staghorn coral (*Acropora cervicornis*) and elkhorn coral (*Acropora palmata*), a project was launched to create a coral gardening. The aim was to produce “cuttings” that could be transplanted in the reefs off Guadeloupe in order to strengthen existing populations.

Technique

The construction of the nursery began in 2016. To establish a nursery suitable for the cultivation of these two species of coral, fragments were collected in natura from the reefs of the Petit Cul-de-Sac Marin. The cuttings were then hung from the “branches” of a PVC structure installed in the water column. After a growth phase of 8 to 12 months, the cuttings were divided again in order to increase the number of corals growing in the nursery. Eventually, the fragments will be transplanted in severely degraded reefs.

Environmental monitoring

Every 10 days, an inventory was taken of the nursery and the growth of the cuttings was monitored.

1. Measurements were taken of the total length of five cuttings per supporting structure.
2. The survival rate of all the cuttings was also calculated.
3. At the same time as the monitoring, the trees were cleaned to remove colonizing organisms (algae, barnacles, bivalves, etc.) that could cover the cuttings and hinder their development.
Success rate (%): 94%

Duration of experiment (including follow-up): 3 years

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
</tbody>
</table>

Project aimed at providing for or implementing one of the above measures (Restoration-Rehabilitation-Creation)

Technical factors affecting risk:

Species transferred	4
Removal technique	removal of coral fragments
Attachment technique	small coral fragments attached to PVC tubes with nylon threads
Means of transportation	N/A
Transportation time	N/A

References

2. Analyse régionale Guadeloupe, synthèse des connaissances. [Regional analysis Guadeloupe, knowledge synthesis.] University of the French West Indies and Guiana, Guadeloupe National Park and the Marine Protected Areas Agency, 2013
The aim of the operation carried out by Créocéan following the construction of an LNG plant was to plant coral cuttings on concrete structures and dead coral colonies.

<table>
<thead>
<tr>
<th>Project</th>
<th>Coral cutting following the construction of an LNG plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Balhaf, Yemen</td>
</tr>
<tr>
<td>Species</td>
<td>Acropora cf. muricata, Pocillopora damicornis, Pocillopora cactus, Montipora sp., Stylophora pistillata, Porites cf. lutea, Echinopora gemmacea, Favorites pentagona, Pavona clavus, Favorites peresi, Hydnophora exesa, Cyphastrea microphthalma, Gonipora minor, Galaxea fascicularis/astreata</td>
</tr>
<tr>
<td>Surface area</td>
<td>825 m² for the second phase</td>
</tr>
<tr>
<td>Success rate</td>
<td>30 to 40% survival and development of the cuttings</td>
</tr>
<tr>
<td>Cost</td>
<td>N/A</td>
</tr>
<tr>
<td>Year</td>
<td>Restoration in 2009, monitoring in 2012</td>
</tr>
<tr>
<td>Field officer</td>
<td>dutrieux@creocean.fr</td>
</tr>
</tbody>
</table>

Objective

Upon completion of the construction of the LNG plant, despite the precautions taken, some coral areas were degraded, leaving behind a hard substrate with no living colonies. In order to mitigate the damage observed, a project was launched to colonize the substrates with coral colonies. The objective of the operation was therefore to replant coral cuttings on the virgin substrates.

Technique

The coral cuttings were collected from healthy areas in such quantities as not to endanger native colonies. Branching corals were cut with stainless steel wire cutters. The length of the fragments was between 5 and 15 cm, with every fragment having more than one branch. Massive corals were removed using a small hammer and a sharp chisel. The fragments were placed in perforated plastic baskets and then in boxes or partitioned spaces to protect them. They were glued with cement mixed with an additive to keep them compact underwater. The fragments were protected from fish predation by various structures (square steel cages, plastic netting, etc.).

Two types of restoration were carried out:

1. Small-scale restoration: 1,369 coral fragments from 12 genera/two areas were restored (substrates: 12 acropods, nine large rocks, one dead Pocillopora bank). After eight months, 50% of the coral fragments were still alive.
2. Large-scale restoration: 8,454 coral fragments from six genera/six areas were restored (artificial concrete blocks, acropods, dead Pocillopora bank, dead Porites, basaltic flat rocks with dead Stylophora).
The restoration project increased coral cover in all monitored areas of Balhaf, but with mixed results: where natural recruitment was low (or non-existent, on artificial substrates), the restoration was effective in accelerating coral recovery. However, on natural substrates conducive to natural recruitment, the restoration proved less beneficial than the natural colonization process. Three years after the restoration operations, the survival and development percentages vary somewhat (between 30 and 40%), with levels of adaptation and resilience depending on the species, which suggests that the restoration method could be improved by conducting a more detailed feasibility study (figure 1).

The feasibility phase is important for identifying the best methods and species to be used in a second, larger-scale phase. With this project, only a few months passed between the two phases, which seems somewhat insufficient to make a judicious choice regarding the colonies to be planted. We recommend that more efforts be devoted to conducting preliminary studies, including hydrodynamic studies and a longer-term study on coral growth. In addition, methods need to be adapted to each site to optimize operational success. The choice of species proved to be crucial for survival rates and should be considered with great care in future. Coral growth rates must also be taken into account: they can vary greatly between species.

References

While the measures presented in the case studies yielded satisfactory results overall, with high survival and growth rates regardless of the type of project (transplantation, nurseries), certain precautions must be taken when implementing them. In particular, there is a need to reduce stress and coral mortality factors before considering any restoration measures.

Prior to any restoration project, it is essential to re-establish the right environmental conditions to avoid high mortality rates (Bowden-Kerby, 2003). It is also necessary to consider the risks of bacterial and viral pollution and pathogen dispersal when selecting mother colonies. Housing the colonies in a nursery for a time can serve as a form of quarantine before they are transplanted at the host site. Liman and Schopmeyer (2016) point out that the transfer of affected corals from the main nursery to a quarantine area is a method already used to limit the spread of disease.

The fragmentation of a mother colony into numerous cuttings can also lead to the genetic impoverishment of transplanted populations (Meesters et al., 2015). As a result, the cuttings become particularly vulnerable to external pressures. A minimum genetic diversity should be maintained within sets of cuttings of the same species.

It is important to take into account the concept of density dependence in mechanisms to manage coral populations. Some species may interact favourably or unfavourably. It is essential to draw inspiration from the best-preserved natural communities in the geographic basin in which the project is to be carried out and to identify their preferred groupings (ecological succession, intra- and interspecific interactions, etc.).

Moreover, the notion of habitat creation through the establishment of coral colonies is risky in natural environments, as there is often a reason for the absence of such colonies (unfavourable environmental conditions, heavy swells, exposure to cyclones, etc.). However, it is more suitable for consideration in relation to newly submerged artificial or natural substrates, such as dykes and artificial reefs. The taking of cuttings can facilitate and accelerate the natural colonization of these newly created habitats.

Finally, it should be noted that the results reported relate to short- and medium-term follow-up, yet the development of coral colonies can take several decades, if not hundreds of years. Although frequent, regular monitoring is required during the initial phases following the handling of coral colonies, after the first months of acclimatization, monitoring that is more spaced out, but conducted over a longer period (5 to 10 years), could be envisaged.
SEAGRASSES
Seagrasses of marine angiosperms are widely distributed in both tropical and temperate coastal waters. They generally occur in sandy or silty substrates in clear, shallow waters, where there is enough light for photosynthesis (Green and Short, 2003). They are rich sources of biodiversity and are also considered ecosystem engineers (Short et al., 2007), so it is vital to protect the habitats that they form. Indeed, the disappearance of seagrasses is the first step in a cascade effect on the trophic dynamics of a given area (Orth et al., 2006). These ecosystems, frequently used as nurseries by a number of organisms, form the basis of potentially complex ecological cycles.
Seagrasses are underwater meadows consisting of monocotyledonous flowering plant species of the spermatophyte phylum. They began colonizing the marine environment around 100 million years ago (Hemminga and Duarte, 2000). In the course of their evolution they have adapted to their surroundings, developing a resistance to high or variable salinity, strong root systems to better embed them in substrates, and the ability to reproduce both vegetatively and sexually (Green and Short, 2003). While seagrasses are present in all oceans except the Antarctic (figure 13), they cover only 0.2% of the ocean bed (Fourquarean et al., 2012), equating to a surface area of 177,000 to 600,000 km² (Duarte, 2013). They are found in six bio-regions: four temperate regions (the North Atlantic, the North Pacific, the Mediterranean and the oceans of the southern hemisphere) and two tropical regions (the Tropical Atlantic and the Tropical Indo-Pacific) (Short et al., 2007). Compared with coral reefs and mangroves, seagrasses have a very broad geographic distribution (Orth et al., 2006).
Seagrasses are present in six bio-regions: four temperate regions and two tropical regions. They cover 0.2% of the ocean bed, equating to an estimated surface area of between 177,000 and 600,000 km².
The 60 or so species of seagrasses found around the world (Short et al., 2007) play a number of vital roles in coastal areas:

Filtration of nutrients and pollutants
Pollutants from water columns and sediments tend to accumulate. **Seagrasses play an important role in filtering water and maintaining the quality of their immediate environment and nearby habitats** (Green and Short, 2003).

Carbon sequestration
Seagrasses are able to store carbon for long periods (McLeod, 2011; Duarte et al., 2013; Fourqurean et al., 2012), at a rate of 48 to 122 million tonnes per year.

Nursery
The rich and productive coastal habitats provided by seagrasses accommodate a large number of marine species of ecological importance at all trophic levels, some of which are threatened with extinction (Christianen et al., 2014; Hemminga and Duarte, 2000; Heck et al., 2003; Orth et al., 2006; van Tussenbroek et al., 2006).

Source of organic matter from primary production
Seagrasses are at the bottom of a number of food chains (Green and Short, 2003; Orth et al., 2006). Indeed, numerous species, such as turtles, dugongs and herbivorous fish, rely on them as a food source.

Thriving aquatic ecosystem
Much like coral reefs, seagrasses accommodate and are beneficial to a whole host of different species (Green and Short, 2003).

Ecosystem services
Seagrasses provide a number of ecosystem services. For instance, they play a mitigating role by stabilizing sediments and preventing coastal erosion (Boudouresque, 2001; Koch, 2007; Koch et al., 2012; Christianen et al., 2013). Moreover, dense seagrasses help to alleviate climate change by sequestering carbon (Duarte et al., 2005; McLeod et al., 2011; Fourqurean et al., 2012). Lastly, the various species present in seagrasses ultimately serve as a food source for human populations that reside in coastal areas and practise traditional fishing and subsistence techniques (de la Torre-Castro and Rönnbäck, 2004; Björk et al., 2008; Unsworth and Cullen, 2010; de la Torre-Castro et al., 2014).

It is therefore essential to protect these ecosystems. However, seagrasses face a number of threats.
WHAT ARE THE THREATS?

The threats identified are often associated with widespread changes or poor management of catchment areas. The most common threat is excess sediment, which limits light penetration and, according to Orth et al. (2006), causes a significant decline in seagrass meadows.

NATURAL THREATS

Overgrazing by herbivores
Overgrazing can occur where the predators of herbivorous species are overfished (Boudouresque, 2001). It may also result from a reduction in the surface area of seagrasses, such that herbivore demand outstrips the natural production of the remaining areas, leading to a risk of decline.

Extreme climate events
Cyclones, hurricanes and other such phenomena also have an impact on these seagrasses insofar as they accelerate sedimentary erosion and reduce salinity.

Spring tides
These extreme tides expose seedlings and cause them to dry out.

ANTHROPOGENIC THREATS

Seagrasses are also particularly prone to direct anthropogenic pressures, including the following (non-exhaustive list):

Agricultural, industrial, urban and aquaculture pollution
These forms of pollution can result in excess sedimentation, eutrophication and the accumulation of waste products, hydrocarbons and heavy metals.

Uprooting
Uprooting can be caused by fishing gear or anchors, for example.

Dredging
Dredging results in the physical destruction of seagrass meadows and the resuspension of surrounding sediment.
This section concerns the ecological engineering techniques used for seagrass beds. It includes definitions of the most commonly used techniques and examples of projects carried out around the world.

- page 61 Transplantation
- page 62 Micropropagation
- page 63 Sowing
- page 64 Passive management
TRANSPANTATION

Transplantation is the most commonly used ecological engineering technique for restoring seagrasses, as the results are visible following restoration (Oceana, 2010). It involves transferring plugs or cuttings of marine spermatophytes from donor to receptor sites. There are different methods of transplantation:

Manual method

Cuttings or plugs are transplanted manually at the degraded site. Seedlings can be removed in several ways:
- **Plug method**: removal of plugs using PVC or metal tubes.

 Advantages of the plug method: 1. limits removal of surrounding sediment; 2. limits damage to roots and rhizomes. Plugs are more resistant to erosion.

 Disadvantages of the plug method: impact on donor site.
- **Staple method**: grouping of seedlings using staples for subsequent transplantation in sediment (Fonseca et al., 1998).

Mechanized method

Use of motorized harvesting and planting machine to collect seagrass plugs for subsequent replanting.

Advantage of mechanized technique: Speed of transplantation (44 days per hectare) (Keulen, 2002; Seddon, 2004).

Disadvantages of mechanized technique: Loss of seedlings during removal and lack of follow-up during planting at receptor site, resulting in losses (Bell et al., 2008). This method is only marginally more effective than the manual technique (Fishman et al., 2004).

Advantages of transplantation

1. Grouping seedlings in plugs increases their survival rate (Zarranz et al., 2010).
2. Manual transplantation makes it possible to control the fixation of plants in the sediment (Bell et al., 2008) and minimizes damage to the donor site (Lanuru, 2011).

Disadvantages of transplantation

1. This method can only be used for small areas, since it requires physical labour, great care in collecting shoots and transplantation by hand (Björk et al., 2008; Oceana, 2010).
2. The donor site is damaged for the benefit of the receptor site, although such damage is managed (Oceana, 2010).
3. High economic and logistical costs (Oceana, 2010).

*Average based on available data for a follow-up period of three years or more. These values are to be treated with the utmost caution. See page 102 of the guide.
MICROPROPAGATION

Also referred to as in vitro cultivation, micropropagation is a method of growth in a controlled environment that enables the regeneration of seedlings from seeds or terminal buds (Fonseca et al., 1998; Zarranz et al., 2010). Cultivated seedlings are then transferred to the natural environment.

Advantages

1. Production of a large number of species without seasonal constraints (Fonseca et al., 1998).
2. Monitored growth for a higher survival rate (Zarranz et al., 2010).
3. Ability to select species that are resistant to disease and stress (Fonseca et al., 1998).
4. Improved genetic diversity (Fonseca et al., 1998; Zarranz et al., 2010).
5. Mass production reduces costs (Fonseca et al., 1998).

Disadvantages

1. Does not work for all species (difficulties encountered with S. filiforme and T. testudinum).
SOWING

This technique involves taking mature seeds from the donor site and sowing them directly in the area to be restored.

Advantages

1. **Lower cost** (Oceana, 2010).
2. **Low impact** on the donor site (Oceana, 2010).

Disadvantages

1. Results **not immediately visible**: slow establishment (Oceana, 2010).

Collecting seagrass seeds ©Mariane Aimar-Godoc
PASSIVE MANAGEMENT

Natural recruitment improvement method

The natural recruitment improvement method involves promoting the propagation and growth of seagrasses by placing hessian fabric on the sea floor, such that the seagrasses hook onto the cloth and develop in situ (Wear et al., 2006). For this passive management method to be effective, it must be used at sites with a higher density of seedlings (Wear et al., 2006).

Advantages

➊ Very inexpensive and non-invasive method (bags biodegradable and removable) (Wear et al., 2006).
➋ No impact on source sites (Irving et al., 2010).
➌ Provides a stable sedimentary environment for sowing conducive to the establishment of root systems (Irving et al., 2010).
➍ Non-technical method (no particular skills required for implementation).

Disadvantages

➊ Requires a sound understanding of the natural mechanisms by which seagrasses spread (seeds and rhizomes).
➋ Relatively long wait for results.
➌ Technique enhances the natural process but cannot fully replace it.
➍ Risk of competition with other organisms (algae, molluscs, crustaceans, etc.) while seedlings are getting established.
SEAGRASS CASE STUDIES

P. 66 - 67 Seagrass transplantation at Sainte Rose
P. 68 Seagrass transplantation at La Riviera du Levant
The objective of the project was to create a new seagrass area to mitigate the impact of improvement works to a seawall. The receptor site was located near the departmental port of Sainte Rose and was chosen for its physical, chemical and environmental properties.

Table 1 Summary of manual transplantation techniques

<table>
<thead>
<tr>
<th>Anchoring</th>
<th>TECHNIQUES</th>
<th>SURFACE UNIT</th>
<th>SURFACE AREA RECREATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Plugs (10x10 cm) over 100 m²</td>
<td>Quadrat of 20.25 m²</td>
<td>1,500 m²</td>
</tr>
<tr>
<td>NO</td>
<td>Plugs (20x20 cm) over 400 m²</td>
<td>Quadrat of 20.25 m²</td>
<td>1,500 m²</td>
</tr>
<tr>
<td>YES</td>
<td>Drilled cement slabs</td>
<td>Slabs of 1 m²</td>
<td>112.5 m²</td>
</tr>
<tr>
<td>YES</td>
<td>Welded meshes</td>
<td>Meshes of 1 m²</td>
<td>112.5 m²</td>
</tr>
<tr>
<td>YES</td>
<td>Stake or U-hooks</td>
<td>Quadrats of 1 m²</td>
<td>860 m²</td>
</tr>
<tr>
<td>YES</td>
<td>Hessian fabric</td>
<td>Cloths of 1 m²</td>
<td>550 m²</td>
</tr>
</tbody>
</table>

Objective

The turtle grass was transplanted manually. The operation took 10 weeks. Two techniques were used to maximize the chances of success:

Anchoring technique, accounting for 1,635 m²
Attachment of cuttings:
- On cement slabs drilled with 36 holes, 10 cm in diameter;
- On metallic meshes;
- On stakes or U-hooks;
- On hessian fabric.

Non-anchoring technique, accounting for 3,000 m²
Removal of plugs (rhizome and sediment) using a spade or core drill. Plug sizes:
- 10 cm x 10 cm
- 20 cm x 20 cm
Replanting in quadrats of 20.25 m².
Success rate (%): N/A

<table>
<thead>
<tr>
<th>Duration of experiment (including follow-up): 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence phase</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Type of measure</td>
</tr>
<tr>
<td>Restoration</td>
</tr>
<tr>
<td>Rehabilitation</td>
</tr>
<tr>
<td>Creation</td>
</tr>
</tbody>
</table>

Project to create a habitat on a site where there was not one initially. Intervention required.

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>Removal technique</th>
<th>Attachment technique</th>
<th>Means of transportation</th>
<th>Transportation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>removal of plugs</td>
<td>planting of plugs or attachment of cuttings in different substrates (cement slabs, metallic meshes, hessian fabric, stakes or U-hooks)</td>
<td>small craft</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Environmental monitoring

Monitoring was done by field marine biologists over five years, two days per quarter for the first year and then two days per year for the next four years. The effectiveness of the two techniques used was gauged and the physical and chemical characteristics of the water were monitored. Transplant growth was measured using boundary markers. Bacteriological and chemical water tests were done and the ecological condition of the seagrass was monitored under the Water Framework Directive.

Cost

The cost of replanting was **€292,611**.

![Cost](image)

![Environmental monitoring](image)

References

2. Marché de Maîtrise d’OEuvre relatif à la réalisation des études environnementales complémentaires en vue de la réalisation des infrastructures projetées dans le port départemental de Sainte-Rose, phase 3 (Project management contract for the execution of additional environmental studies with a view to implementing infrastructure plans at the departmental port of Sainte Rose, phase 3)
The objective of the transplantation project was to complement existing turtle grass populations at the sites of Petit Cul-de-Sac Marin and La Riviera du Levant.

Transplantation carried out along the southern coast of Grande-Terre. Ordered by the Grand Port Maritime de la Guadeloupe and managed by CDC Biodiversité and Coraïbes (a limited liability company devoted to marine ecological restoration).

Initially, turtle grass seeds were harvested along the coast of Grande-Terre and then cultivated in a controlled environment (with conditions similar to those of the receptor site). This made it possible to monitor the flowering and fruiting of the seagrasses. A total of 200 seeds were cultivated either in pots or on hessian fabric. Once the seedlings had grown sufficiently, manual transplantation was carried out.

Two transplantation techniques were used:

1. Anchoring technique, where seedlings were anchored in and grown on hessian fabric.
2. Non-anchoring technique, where cultivated seedlings were transplanted into pre-made holes in the sediment.

To monitor the ecological condition of the transplanted seagrass, an observation phase was completed. The density of the seagrass and the physical parameters of the environment were measured for each of the sites. Monitoring was carried out fortnightly for a total of six months. The cultivation phase (launched in early July 2017) is ongoing. The physical and chemical parameters of the growing trays were monitored daily, and regular maintenance was carried out to control algae growth. The growth of the seedlings was also regularly measured.

References

CONCLUSIONS REGARDING SEAGRASS

The most appropriate planting method for a given site is determined based on restoration objectives, local conditions, seagrass species and allocated budgets (Björk et al., 2008).

A number of conditions must be met to increase the chances of success of a restoration project. These include (according to Paling et al., 2009; Cunha et al., 2012; and Van Katwijk et al., 2016):

1. Setting clear project goals and targets and choosing appropriate sites;
2. Defining methods with due regard for site conditions, monitoring period and project success criteria;
3. Determining and eliminating local threats (bioturbation, herbivory, hydrology, anthropogenic impact, etc.) before launching projects;
4. Conducting small-scale restoration tests before embarking on large-scale projects;
5. Minimizing damage to the donor site;
6. Extending the tests to different sites and using different methods to improve the success rate and effectiveness of restoration initiatives;
7. Demonstrating flexibility in the face of unusual events — adaptive management is foundational in restoration projects;
8. Learning from past experiences and using the information acquired to improve methods;

It should be noted that if a given natural habitat does not naturally contain any seagrass, then restoration is not the answer. Indeed, the absence of seagrass is probably attributable to a number of factors, such as hydrodynamics, water quality, sediment and nutrient inputs.
5 MANGROVES
Mangroves are located upstream from lagoons, coastlines, estuaries or mangrove basins in intertropical regions and they link marine and terrestrial environments. They grow in calm waters in tidal flats. Mangrove ecosystems are an indicator of coastal change and health (Blasco et al., 1996). Much like seagrasses, they are associated with coral reefs.
Situated at the interface between marine and terrestrial environments, mangroves cover around 152,000 km² of coastal areas (figure 14). They are found in intertropical regions, upstream from lagoons, coastlines, estuaries or mangrove basins. Mangroves are defined as trees and shrubs that grow almost exclusively in the intertidal zones of tropical coastlines. They can be found in calm waters in tidal flats. Certain ecological requirements must be met in order for mangroves to grow, such as a loose, oxygen-poor substrate and relatively high or variable salinity.

THE MAJOR CHALLENGES OF MANGROVE CONSERVATION
France is home to **103,427 ha** of mangroves, ranking it 32nd globally (Roussel et al., 2010). However, the total surface area of mangroves is difficult to estimate owing to a lack of data in certain regions, an absence of historical references and the changeability of mangrove ecosystems (rapid accumulation/erosion).

Mangroves are present in some overseas territories.
THE ROLES OF MANGROVES

Mangroves provide a number of services:

Sediment stabilization
Mangroves filter, retain, trap and stabilize sediment from land, protecting lagoons from excessive sedimentation (Roussel et al., 2010; Quod and Malfait, 2016).

Thriving aquatic ecosystem
Mangroves are a rich source of biodiversity, serving as a breeding ground and nursery for numerous species of birds and fish of significant economic importance for local communities (Quod and Malfait, 2016).

Fertilization
According to Roussel et al., (2010), mangroves play a part in fertilizing lagoons. The growth of seagrasses and phytoplankton is catalysed by nutrient inputs from mangroves.

Coastal protection
Mangrove root systems disperse waves. The energy of waves that pass through 200 metres of mangroves is reduced by 75% (Roussel et al., 2010).

Reduction in CO₂ emissions
As primary producers, mangroves play a role in cleaning the air by exporting or sequestering CO₂. Indeed, mangroves can serve as both carbon sinks and sources (Cormier-Salem and Panfili, 2016).

Ecosystem services
A number of ecosystem services are associated with mangroves, which accommodate a broad range of exploitable marine species. In many countries, mangroves are used for traditional fishing (for crabs, cockles and fish) and as a source of wood for cooking and building dwellings. They are also a tourist attraction of increasing importance thanks to ecotourism and the establishment of hiking trails over the years (Roussel et al., 2010).
WHAT ARE THE THREATS?

NATURAL THREATS

Cyclones
Cyclones are the most damaging natural threat to mangroves, leading to the uprooting and destruction of the belt of pioneer trees (Roussel et al., 2010) and ultimately to sedimentary erosion.

Drought
Periods of drought primarily affect the soil, leading to increased aridity, salinity and acidity (Roussel et al., 2010). Drought is also conducive to fire, which can destroy vast swathes of mangrove.

Large swells
Like cyclones, large swells can uproot seedlings and weaken roots.

ANTHROPOGENIC THREATS

Urban development
Dredging activities associated with urban development can suffocate mangroves and lead to soil acidification (Roussel et al., 2010). Some types of development can also modify sediment transport or river flow upstream, leading to the suffocation or uprooting of mangroves.

Pollution and waste
Many waste products and pollutants affect mangroves, including household waste, persistent organic pollutants and toxic chemical compounds. Pollution can have multiple sources, but the consequences range from environmental dysfunction to the complete destruction of mangroves (Roussel et al., 2010).

Exploitation of mangroves
Mangroves are sometimes used for construction, charcoal and other purposes.
This section concerns the ecological engineering techniques used for mangroves. It includes definitions of the most commonly used techniques and examples of projects carried out around the world.

- page 77 Transplantation
- page 78 Sowing
- page 79 Nursery
- page 80 Passive management
TRANSPLANTATION

This method involves transplanting seedlings of varying ages to receptor sites. The species to be transplanted will depend on the transplantation site. Species already present in close proximity to the site are preferable, while monocultures are to be avoided (Pole-Relais Zones Humides Tropicale [Resource Centre for Wetlands], 2018).

Advantages
➊ Method recommended where passive management is no longer possible (Pole-Relais Zones Humides Tropicale [Resource Centre for Wetlands], 2018).

Disadvantages
➊ Weakening of roots is observed when collecting seedlings from the donor site and replanting, thus reducing success rates (Guiraud et Poveda, 2014).
➋ Potential impact on donor site where seedlings are removed from their natural environment.

These values are to be treated with the utmost caution. See page 103 of the guide.
SOWING

This technique involves taking seeds or propagules from a donor site and sowing them directly into the area to be restored. There are several methods of sowing.

Advantages of sowing

1. **Inexpensive and easy to implement**, suitable for **large-scale deployment** in participative programmes with local populations (see MANA’O study project on mangroves in Ouvéa, where local communities were involved in sowing).

2. **Non-invasive** and does not damage either the donor or the receptor site.

Disadvantages of sowing

1. **Seedlings are often weakened** by desiccation, predation and tides (Guiraud and Poveda, 2014).

2. During collection, **propagules present in the soil are generally weakened**: stagnation in water, mechanical action of swell (Guiraud and Poveda, 2014).

3. **Introduction of plastic into the environment** (Riley method).

Direct planting

Direct planting involves taking seeds or propagules and forcibly establishing them in the sediment of a specific site (Guiraud and Poveda, 2014).

Riley encased methodology

The Riley encased methodology, developed by Robert W. Riley, Jr. in 1995, involves encasing propagules in translucent PVC tubes to protect them from tide-borne debris (wood, algae), predators and wave action.

Average cost

11,767 $ international dollars/ha/year

(± 14,324 standard deviation)

Average rate of effectiveness

49.2%

Average based on available data for a follow-up period of one to two years. These values are to be treated with the utmost caution. See page 103 of the guide.
NURSERIES

Nurseries allow the growth of propagules to be monitored until the roots appear. The seedlings can then be transplanted in mangrove forests (Melana et al., 2000; Ravishankar and Ramasubramanian, 2004).

Advantages

➊ Particularly useful where the natural regeneration rate of the mangrove forest is low (Melana et al., 2000; Toledo et al., 2001; Ravishankar and Ramasubramanian, 2004).

➋ Enables adaptation to the environmental conditions of the degraded site, thus minimizing loss (Nguyen, 2016).

➌ Seedlings more developed and thus less fragile during transplantation (Guiraud and Poveda, 2014).

Disadvantages

➊ Stress related to transfer from nursery to natural environment could lead to failure of restoration (Toledo et al., 2001). All stress factors influencing the relevant species must be evaluated (Lewis, 2005).

➋ Industrial nursery more costly (Guiraud and Poveda, 2014).

Average rate of effectiveness*: 52.5%

Average cost: NA

* Average based on available data for a follow-up period of one to five years. These values are to be treated with the utmost caution. See page 103 of the guide.
PASSIVE MANAGEMENT

Natural self-regeneration

Passive management involves promoting the natural development of mangroves, which is only possible where all environmental conditions are conducive to their growth and establishment (Ravishankar and Ramasubramanian, 2004). The causes of pre-existing upstream problems should therefore be identified before a restoration project is designed (Kamali and Hashim, 2010). Factors limiting self-regeneration are essentially attributable to the presence of plant debris (Hamilton and Snedaker, 1984), the proliferation of invasive species and the abundance of household waste (Association SOS mangroves NC, 2017), but also to topography and hydraulic connectivity. These should be eliminated.

Advantages

1. Low cost.
2. Less soil disturbance.
3. Young seedlings are better established.

Disadvantages

1. Excessive wave action on bare soil can lead to poor establishment of mangroves.
2. Predation of propagules can prevent regeneration of seedlings.
3. Less control over spacing of seedlings.
4. Time-consuming technique. As is the case with other passive management methods, time must be allowed, without human assistance, for the natural re-establishment of processes that have been disrupted.

Average rate of effectiveness* 51.2%

Average cost 48 430 $ international dollars/ha/year (± 73 244.25 standard deviation)

Collection of waste from site ©SOS Mangrove NC

* Average based on available data for a follow-up period of three years or more.
These values are to be treated with the utmost caution. See page 103 of the guide.
MANGROVE CASE STUDIES

P. 82 - 83 Mangrove transplantation and sowing in Miréréni
P. 84 - 85 Mangrove transplantation and sowing in Tsoundzou 1
P. 86 - 87 Mangrove sowing in Mbweni
P. 88 - 89 Mangrove nursery and transplantation in Balandra
P. 90 - 91 Mangrove nursery in Bas du Fort
P. 92 - 93 Mangrove passive management and sowing in Nouméa
P. 94 - 95 Mangrove passive management and sowing in Touho
A reduction in mangrove coverage on Mayotte over a number of years caused the coastline to retreat by 50 m between 1949 and 2011. Over the course of approximately 60 years, a surface area reduction of 6.13 ha was observed. This erosion was probably due to waves measuring 0.5 to 0.8 m, which loosened mangrove roots and destabilized their trunks. Ultimately, the erosion can be attributed to two factors: rising sea levels driven by climate change, and the general subsidence of the island, which has accelerated since a series of seismic events in May 2018. The aim of the project was thus to limit coastline retreat by replanting different species of mangrove.

In view of the above, a mangrove restoration experiment was carried out using three species: grey mangrove, yellow mangrove and red mangrove. The objective of the experiment was to establish a methodological guide for mangrove restoration. To that end, several planting methods were tested at different sites: planting of nursery-reared seedlings; direct planting of propagules; and direct planting of propagules using the Riley encased methodology (see note). Planting was done in April, at the end of the cyclone period, when water salinity was lower and wave action less severe.

Monitoring was carried out for three years and involved measuring plant growth (height), counting the number of leaves, counting the dead plants to be replaced, and identifying signs of predation, at a frequency of two days per month for the first six months and then one day per quarter for the remaining two and a half years, for a total of 23 monitoring days over the three-year period.
Lessons learned

This project led to the drafting of a methodological guide for mangrove restoration on Mayotte to be used by associations. The guide is currently being produced. It explains which techniques achieved the best results for each species and provides advice on how to employ the most successful methods tested in the course of the experiment. However, Olivier Soumille (Manager of ESPACES) concludes that, on Mayotte, the affected mangrove forests cannot be restored because the corresponding substrate has been washed into the bays or the lagoon such that no further mangroves can be planted, and that restoration on Mayotte would be doomed to failure in these areas. Accordingly, it would be more useful to afforest the mangrove hinterland than to work on the mangrove forests themselves.

Riley encased methodology

This method was devised to enable the replanting of mangroves at sites where natural recolonization is no longer possible as a result of general coastal dynamics or disruptions caused by developments. The principle is to prevent any potential damage to the seedling by encasing it in a translucent PVC pipe (measuring 3.8 cm in diameter). The pipe is split lengthwise, promoting seedling growth and water exchange with the substrate.

Results

The results obtained in September 2016 (figure 1) showed a high success rate (61%) for the Ceriops tagal species. However, for other seedlings, the results were markedly different: 4% for Avicennia marina and 0% for Rhizophora mucronata. The complete disappearance of Rhizophora mucronata can be explained by the damage caused during the 2014–2015 cyclone season or by chemical changes caused by sunlight and salt to the Riley encasements, which ultimately destroyed them. The low success rate for Avicennia marina was a result of the site being unsuitable for planting (high salinity) and of extensive predation by crabs.

Success rate (%): highly variable

Duration of experiment (including follow-up): > 3 years

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
</tbody>
</table>

C2: Activity carried out in an environment damaged by humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention.

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>3 planting nursery-reared seedlings and propagules or planting propagules using the Riley encased methodology directly in the substrate or with the aid of a Riley encasement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal technique</td>
<td>N/A</td>
</tr>
<tr>
<td>Attachment technique</td>
<td>N/A</td>
</tr>
<tr>
<td>Means of transportation</td>
<td>N/A</td>
</tr>
<tr>
<td>Transportation time</td>
<td>N/A</td>
</tr>
</tbody>
</table>

References

1. Analyse du site envisagé pour la mise en oeuvre d’un projet expérimental de restauration de mangrove à Miréréni dans la commune de Chirongui [Analysis of the site envisaged for an experimental mangrove restoration project in Miréréni in the municipality of Chirongui]. ESPACES for Conservatoire du littoral (August 2012)
3. 2016 annual results. ESPACES for the Department of the Environment, Planning and Housing of Mayotte (July 2017)
MANGROVE TRANSPLANTATION AND SOWING IN TSOUNDZOU 1

Launched by the Department of the Environment, Planning and Housing of Mayotte, this experimental mangrove plantation project was carried out as part of mitigation measures related to the construction of a bridge over the Kwalé river, concurrently with the Miréréni project (see mangrove case study No. 1).

Objectives:
Implement different planting techniques; after the project, propose a procedure for expansion to other sites.

Monitoring of the experiment
Monitoring was carried out for three years and involved measuring plant growth (height), counting the number of leaves, counting and replacing dead plants, and identifying signs of predation, at a frequency of two days per month for the first six months and then one day per quarter for the remaining two and a half years, for a total of 22 monitoring days over the three-year period.

Table 1 Number of seedlings planted per species

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Seedlings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizophora mucronata</td>
<td>288 seedling</td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td>360 seedling</td>
</tr>
<tr>
<td>Avicennia marina</td>
<td>504 seedling</td>
</tr>
</tbody>
</table>

The mangrove restoration experiment was carried out using three species: grey mangrove, yellow mangrove and red mangrove. Several planting methods were tested at different sites: planting of nursery-reared seedlings; direct planting of propagules; and direct planting of propagules using the Riley encased methodology. The project was carried out in April 2013, at the end of the cyclone period, when the water salinity was lower and the wave action less severe.
Lessons learned
This project led to the drafting of a methodological guide for mangrove restoration on Mayotte to be used by associations. The guide is currently being produced. It explains which techniques achieved the best results for each species and provides advice on how to employ the most successful methods tested in the course of the experiment. However, Olivier Soumille (Manager of ESPACES) concludes that, on Mayotte, the affected mangrove forests cannot be restored because the corresponding substrate has been washed into the bays or the lagoon such that no further mangroves can be planted, and that restoration on Mayotte would be doomed to failure in these areas. Accordingly, it would be more useful to afforest the mangrove hinterland than to work on the mangrove forests themselves.

Problems encountered
In addition to the significant problem of predation by animals, the following issues were identified: damage caused by crabs during the first few months of the experiment (to address this, Riley encasements were placed at the foot of the trees); accumulation of waste around young plants following storms, leading to their suffocation; damage to the site through vandalism.

Results
The results obtained in September 2016 (figure 1) showed survival rates of 33% and 56% for the *Avicennia marina* species. These relatively low rates can be explained by zebu grazing. For *Ceriops tagal*, the success rate stood at 40% for one area, in contrast to another area where the survival rate was close to 0% as a result of trampling by zebus. Lastly, the success rate for *Rhizophora mucronata* was very high, at around 75%.

![Figure 1: Success rate by plantation (in %)](image)

<table>
<thead>
<tr>
<th>Success rate (%)</th>
<th>Duration of experiment (including follow-up): > 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence phase</td>
<td>A</td>
</tr>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
</tr>
<tr>
<td>C2: Activity carried out in an environment damaged by humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention.</td>
<td></td>
</tr>
</tbody>
</table>

Technical factors affecting risk:
- **Species transferred**
- **Removal technique**
- **Attachment technique**
- **Means of transportation**
- **Transportation time**
 - 3 planting of nursery-reared seedlings, propagules, and propagules using the Riley encased methodology directly in the substrate or with the aid of a Riley encasement
 - N/A

References
1. Reconstitution du pont de la RN2 sur Kwalé: proposition d’implantation d’un projet expérimental de restauration de mangroves à Tsoundzou 1. [Reconstruction of the RN2 bridge over the Kwalé: proposal for the establishment of an experimental mangrove restoration project in Tsoundzou 1.] ESPACES for the Department of the Environment, Planning and Housing of Mayotte
3. 2016 annual results. ESPACES for the Department of the Environment, Planning and Housing of Mayotte (July 2017)
Years of overexploitation left the mangrove forest in the village of Mbweni degraded and exposed in some places. The restoration project was the result of a spontaneous initiative taken by community organization Mbweni Environment and Women’s Group, which recognized the importance of protecting this ecosystem. The aim of the project was to restore the mangrove forest and increase its density using a transplantation technique.

Monitoring of the experiment

Three months after planting, data were obtained on growth conditions, plant health, number of dead plants, soil organic matter content and soil saturation rate.

Lessons learned

While only a third of the transplants survived, the project has had a significant positive impact on the overall health of the mangroves. Moreover, the restoration was carried out by villagers, which fostered a desire to protect the mangroves and raised awareness of ecological problems among the general population. The subject of cost was not broached, but the participation of villagers limited the financial outlay.

Objective

The project involved the planting of 3,000 seedlings, primarily *Rhizophora mucronata* with some grey mangrove (*Avicennia marina*). The technique consisted of collecting and transplanting newly fallen propagules in open areas.

Mangrove sowing in Mbweni, Tanzania, by community organization Mbweni Environment and Women’s Group.
Results

The mortality rate for *Rhizophora mucronata* seedlings was rather high, standing at 37% and 47% at three and eight months after transplantation, respectively (figure 1). The possible causes of these relatively low survival rates include: significant exposure of soil to sunlight, such that the soil organic matter content and saturation rate were too low to sustain the seedlings; insufficient tidal movement both within and outside the mangrove forest, a phenomenon that appears to be worsening year after year (Note: this is a personal observation only and has not been scientifically verified); the fact that sowing was done by villagers who lack expertise in mangrove ecology, leading to occasional root damage or to planting in inappropriate areas. Thus, of 3,000 propagules planted, only 1,000 were completely healthy, equating to a success rate of 36% eight months after transplantation (figure 1). However, the mortality rate, which was high in the first few months of monitoring, tended to stabilize, underlining the need to improve sowing techniques and to choose more appropriate sites. Following the initial stage of natural selection of viable propagules, mortality rates were relatively low (10% in five months).

Note: No results are available for *A. marina.*

<table>
<thead>
<tr>
<th>Success rate (%)</th>
<th>Duration of experiment (including follow-up): approx. 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequence phase</td>
</tr>
<tr>
<td></td>
<td>Restoration</td>
</tr>
<tr>
<td>Type of measure</td>
<td></td>
</tr>
<tr>
<td>C2: Activity</td>
<td>Restoration</td>
</tr>
<tr>
<td>carried out in</td>
<td></td>
</tr>
<tr>
<td>an environment</td>
<td></td>
</tr>
<tr>
<td>damaged by</td>
<td></td>
</tr>
<tr>
<td>humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention.</td>
<td></td>
</tr>
</tbody>
</table>

Technical factors affecting risk:

- **Species transferred**
- **Removal technique**
- **Attachment technique**
- **Means of transportation**
- **Transportation time**

- 2
- Planting of propagules
- Directly in substrate
- N/A
- N/A

References

Objective

The Balandra lagoon is an arid zone (precipitation: <150 mm/year). It also includes a number of sites that have been converted for aquaculture. The combination of these factors led to a reduction in mangrove coverage. The aim of this project was therefore to rear seedlings in a nursery that were resistant enough for mangrove reforestation.

Technique

White mangrove was cultivated for its abundance of propagules and its compact morphology, which made its seedlings easier to transplant. A total of 555 propagules were collected and planted in groups of five in biodegradable plastic bags. Growing the seedlings in groups helped to reduce their mortality rate. The decision was made to use open-air nursery systems that were separated from the tide to avoid exposing the seedlings to salt stress. However, the temperature and humidity of the nurseries had to be checked frequently to ensure the survival of the seedlings, given the aridity of the region. Once the seedling roots were long enough, the plastic bags were transferred directly to the lagoon.

<table>
<thead>
<tr>
<th>Project</th>
<th>Creation of a nursery to grow seedlings that were hardy under the environmental conditions of the site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Balandra lagoon, Mexico</td>
</tr>
<tr>
<td>Species</td>
<td>White mangrove (Avicennia germinans)</td>
</tr>
<tr>
<td>Surface area</td>
<td>53,000 m²</td>
</tr>
<tr>
<td>Success rate</td>
<td>76%</td>
</tr>
<tr>
<td>Cost</td>
<td>N/A</td>
</tr>
<tr>
<td>Year</td>
<td>1994</td>
</tr>
</tbody>
</table>

Monitoring of the experiment

The growth of the seedlings was initially monitored one, two and four weeks after planting in the nursery and then every six months for two years. Data on plant height, number of leaves and survival rate were collected.
Results

The mangrove transplants survived and grew well under natural conditions, with 74% successfully established at the receptor site (lagoon) four years after transplanting (figure 1). The open-air nurseries demonstrated the effectiveness of this mangrove reforestation technique in areas where natural regeneration is slow.

Figure 1 Survival rate (in %)

<table>
<thead>
<tr>
<th>Success rate (%)</th>
<th>76%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of the experiment (including follow-up): approx. 4 years</td>
<td></td>
</tr>
<tr>
<td>Sequence phase</td>
<td>A</td>
</tr>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
</tr>
<tr>
<td>C2: Activity carried out in an environment damaged by humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention</td>
<td></td>
</tr>
</tbody>
</table>

Technical factors affecting risk:

Species transferred	1 planting groups of propagules
Removal technique	directly in substrate in biodegradable plastic bags
Attachment technique	N/A
Means of transportation	N/A
Transportation time	

References

MANGROVE NURSERY IN BAS DU FORT

Guadeloupe

Nursery created in Bas du Fort, Guadeloupe. Ordered by the Grand Port Maritime de la Guadeloupe and managed by CDC Biodiversité and Coraïbes (a limited liability company devoted to marine ecological restoration).

Project Creation of a mangrove nursery
Site Bas du Fort
Species Red mangrove (Rhizophora mangle), white mangrove (Avicennia germinans), grey mangrove (Conocarpus erectus)
Surface area 800 m²
Success rate R. mangle: 93%; C. erectus: 13%; A. germinans: currently unavailable
Cost €70,461
Year 2017
Field officer mariane@coraibes.com

Objective

Creation of a nursery with three species of mangrove – red, white and grey – with a view to producing seedlings that can be transplanted to sites affected by coastal developments to strengthen existing populations.

Monitoring of the experiment

The growth of the control propagules was monitored fortnightly. This involved measuring propagule height, counting the number of leaves on each seedling and estimating the percentage of leaves having fallen prey to predators (which is harmful in the early stages of growth). The survival rate of all propagules was also calculated.

Table 1 Number of seedlings planned for the first phase of production

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Seedlings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avicennia germinans</td>
<td>35 seedling</td>
</tr>
<tr>
<td>Conocarpus erectus</td>
<td>40 seedling</td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>175 seedling</td>
</tr>
</tbody>
</table>

Technique

The propagules were collected in natura from a number of sites between September and October 2017 and subsequently planted in bamboo pots filled with a loose substrate. For Conocarpus erectus, transplantable seedlings were also produced from branch cuttings.
Results

The results showed a survival rate of 93% for red mangrove and 13% for grey mangrove. The results are as yet unavailable for white mangrove.

<table>
<thead>
<tr>
<th>Success rate (%)</th>
<th>Duration of the experiment (including follow-up): approx. 4 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequence phase: A R M</td>
</tr>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
</tr>
<tr>
<td>C2: Activity carried out in an environment damaged by humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention</td>
<td></td>
</tr>
</tbody>
</table>

Technical factors affecting risk:

<table>
<thead>
<tr>
<th>Species transferred</th>
<th>3 planting of propagules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal technique</td>
<td>directly in substrate in bamboo pots</td>
</tr>
<tr>
<td>Attachment technique</td>
<td>N/A</td>
</tr>
<tr>
<td>Means of transportation</td>
<td>N/A</td>
</tr>
<tr>
<td>Transportation time</td>
<td>N/A</td>
</tr>
</tbody>
</table>

References

Objective

The Rivière Salée mangrove forest, home to a wealth of bird species (46 identified) and seven different mangrove species, is under extreme pressure from various forms of pollution, the spread of invasive species and poor water circulation, leading to the build-up of mud and the asphyxiation of seedlings. In addition, urban growth has led to a reduction in the surface area of the mangrove forest from 90 to 30 ha. From 2007, to conserve the mangrove hinterland, an effort was made to eradicate creepers in line with a protocol provided by the New Caledonia Agronomic Institute (Institut Agronomique néo-Calédonien) in Nouméa. The site was cleaned up with a view to promoting the natural regeneration of seedlings.

Monitoring of the experiment

The association SOS Mangroves RS, has been taking follow-up photographs of the mangrove forest for 10 years. To maintain the area, local authorities dredge the channel once or twice a year to prevent mud from asphyxiating the mangroves.

Rivière Salée

Project Cleaning of mangrove forest to promote site regeneration
Site Rivière Salée mangrove forest, Nouméa
Species 7 species, but primarily Rhizophora selala
Surface area 30 ha
Success rate N/A
Cost €61,800 or €0.21/m²
Year 2007
Field officer sosmangrovesnc98@gmail.com

Monitoring of the experiment

Clearing and burning invasive species at the Rivière Salée site ©SOS Mangrove NC

Beginning in 2007, 10 people (young people experiencing social problems) cleaned for four hours a day over a period of 10 months. Their duties involved managing invasive species, cleaning the area and sowing propagules of three species: grey mangrove (Avicennia marina), milky mangrove (Excoecaria agallocha) and red mangrove (Bruguiera gymnorhiza).
Success rate (%): satisfactory

Duration of the experiment (including follow-up): > 10 years

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
</tbody>
</table>

C2: Activity carried out in an environment damaged by humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention

Technical factors affecting risk:

| Species transferred | 7 |
| Technique used | Cleaning of the natural regeneration zone, occasionally complemented by direct sowing |

Cost

Between 2007 and 2010, work was done solely by volunteers, with the first funding appearing in 2010 in the form of grants from private, regional and European Union funds and IFRECOR (figure 3).

Total expenditure €61,800 or €0.21/m² restored.

Lessons learned

The method used was well adapted to the specific characteristics of the country and was a good fit for the issues faced by young volunteers supporting the association, who met with the association directly and raised awareness in the local population. Nowadays, the use of social networks such as Facebook allows for a much quicker and more positive response on the part of the local population.

However, lack of reactivity at the institutional level caused major damage, resulting in the destruction of certain areas. The voluntary restoration scheme provided an opportunity for young people enrolled in job creation programmes to contribute to the regeneration of the mangrove forest. Through awareness-raising, the local population now understands the value of protecting this area.

Local people have even taken ownership of the site and are participating in raising public awareness. The area regenerated in 2019 amounts to around a hectare. The mangrove forest is in good health, and equilibrium has been restored in the area despite the current waste disposal issue in New Caledonia, which directly affects mangrove forests in the territory. In July 2019, the mangrove restoration project will be presented at the International Mangrove, Macrobenthos and Management Conference in Singapore, on the theme of mangroves and people.

References

- Interview with Monik Lorfanfant (President of SOS Mangroves)
- Facebook: @sos.mangroves.nc
Passive management and sowing were carried out in Touho, New Caledonia, by inhabitants of the Tribu de Koé district, located in the coastal part of the Touho municipality. Most of those involved in mangrove sowing are now members or volunteers of Association Hô-üt, which means “deciding while walking”, in New Caledonian Creole. The association is involved in the conservation of sites included on the World Heritage List of the United Nations Educational, Scientific and Cultural Organization (UNESCO). The commune of Touho is home to 415 hectares of mangrove, which equates to 1.2% of the 35,000 hectares of mangrove found in New Caledonia (Virly, 2008).

Objective

The lagoons and reefs of New Caledonia have been included on the UNESCO World Heritage List since 2008.

The heritage site includes six areas:

1. Grand Lagon Sud;
2. Western coastal area;
3. North-eastern coastal area;
4. Grand Lagon Nord;
5. Atolls of Ouvéa and Beautemps-Beaupré;
6. Atoll of Entrecasteaux.

The commune of Touho belongs to sub-zone 4 of the north-eastern coastal area.

The New Caledonia coast suffers from significant erosion linked to climate change, rising water levels and tropical depressions and cyclones, with the latter affecting the east coast in particular. There is also considerable anthropogenic pressure, including from wastewater flows, pollution from mining companies, household waste, uprooting of young plants, urbanization and the use of mangrove wood for heating. Moreover, there is empirical evidence of a decline in certain species in the affected ecosystems, including crabs, oysters and various species of fish, which triggered the re-planting of mangroves along the coast of the Tribu de Koé district.

The aim of the inhabitants was to manage and sow mangroves in areas affected by woodcutting and to restore and protect the local mangrove forest.

Cost

Mangroves were planted individually by the inhabitants of the Tribu de Koé district, on a voluntary basis only.

Project

Replanting mangroves

Site

Tribu de Koé, Touho (Tuo Cèmuhi)

Species

Species of the *Rhizophora* and *Brugueria* genera only

Surface area

N/A

Success rate

N/A

Cost

N/A

Year

1980–2017

Field officer

asso.hout@gmail.com
Technique

The inhabitants began planting mangroves in the 1980s. These individual initiatives were driven by the reduction in mangrove coverage (caused by the felling of mangroves for heating fuel or by tropical depressions and cyclones). During their trips out to sea, the inhabitants began gathering propagules that had fallen to the ground and re-planting them directly in the area. According to the inhabitants, mature propagules collected directly from trees take longer to grow, so for sowing, the collection of propagules that had fallen to the ground was prioritized. The technique used was to plant in groups of three to four propagules or more (see photograph 1). Propagules planted in groups of at least three grow more quickly and embed themselves more securely once the roots begin to grow. Since 2012, waste collection has also been carried out alongside sowing (see photograph 2).

Monitoring of the experiment

No monitoring was carried out in the field, but generally speaking, mangrove coverage has increased. Key indicators include the return of certain species to the area, namely *Rhizophora* sp. and *Brugueria* sp.

Lessons learned

The inhabitants of the Tribu de Koé district mastered propagule planting in the wake of a series of tropical depressions and cyclones. Their preferred technique was to plant in groups of three. The Touho municipality experiences severe coastal erosion. The inhabitants of Touho and local institutions (town halls and provincial authorities) realized the important role played by mangroves in reducing coastal erosion, preventing floods and increasing fishing resources. Other mangrove sowing and management initiatives were launched by the Tiponite and Tiwae tribes. Thus, between the 1980s and 2017, around 2,000 mangrove seedlings were planted in Touho. Mangrove projects are ongoing throughout the municipality, including the creation of an educational walking trail by the Kowei tribe and awareness-raising of the role of mangroves among school pupils and the wider public.

Success rate (%): N/A

<table>
<thead>
<tr>
<th>Sequence phase</th>
<th>A</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measure</td>
<td>Restoration</td>
<td>Rehabilitation</td>
<td>Creation</td>
</tr>
</tbody>
</table>

C2: Activity carried out in an environment damaged by humans or natural changes in order to establish more favourable conditions for the proper functioning of that environment or for biodiversity, requiring intervention

Technical factors affecting risk:

Species transferred	N/A
Removal technique	planting in groups of 3–4 propagules or more
Attachment technique	and cleaning of the area
Means of transportation	directly in the substrate
Transportation time	N/A
Transportation time	N/A

References

CONCLUSIONS REGARDING MANGROVES

At first glance, mangrove restoration techniques appear simpler than for the other ecosystems studied in this guide, given their link with land forest ecosystems. However, whereas these techniques borrow heavily from traditional arboriculture and horticulture (technical itineraries, biomass production, sexual and asexual reproduction), a number of characteristics specific to the marine environment and the land-sea interface must be taken into account to achieve the objectives set. The NGO Mangrove Action Project (2017) briefly summarizes the steps to be taken to implement integrated and sustainable mangrove restoration projects.

The first of these steps is to understand the practices and customs relating to the mangrove forest to be restored. For instance, owing to their coastal situation, mangrove forests serve as a habitat and an exploitable resource for human populations. The success of a project will depend on the acquisition of information on these uses and on the motivation of the villagers to support the initiative.

Another vital step in ensuring the longevity of any restoration project is identifying the initial factors causing the degradation of the ecosystem (invasive development projects, overexploitation of resources, excessive removal of freshwater, waste input, alteration of sediment transport and so on) and estimating the resources required to alleviate or eradicate these pressures. If the sources of degradation are not at least alleviated, curbing the destruction of the ecosystem will not be possible in the short or medium term.

The next step is to identify the desired condition of the ecosystem after restoration. The focus here is on the ecological objectives of the restoration, which means defining a baseline ecological condition, preferably one in which the mangrove forest is not affected by the pressures identified and is maintained in a state most closely approximating its ecological optimum. This forest will serve as a control site and its ecological structure will be studied with a view to devising an appropriate intervention strategy. It may also be necessary to identify sites and species to be replanted according to their ecological preferences (water level, salinity, hydrodynamics, etc.).

Only once these steps have been taken can the focus shift to actual ecological engineering techniques. Which techniques to use may be determined by the species in question, their methods and periods of reproduction, the risks faced by young plants and any difficulties encountered during their natural regeneration, as well as by the area to be restored. It is not a matter of simply planting young trees, but of devising a complex ecological restoration project to be addressed hierarchically and chronologically in order to achieve objectives as fully and sustainably as possible.
COST AND EFFECTIVENESS OF ECOLOGICAL ENGINEERING TECHNIQUES
COST AND EFFECTIVENESS OF ECOLOGICAL ENGINEERING TECHNIQUES
In the sections above, data on cost and effectiveness have been linked to each of the ecological engineering techniques developed. The following information is provided for further clarification:

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of available data for the ecosystems under review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CORAL REEFS</td>
</tr>
<tr>
<td>Number of available articles/projects</td>
<td>79</td>
</tr>
<tr>
<td>Volume data on survival rate</td>
<td>259</td>
</tr>
<tr>
<td>Volume data on data inputs on cost</td>
<td>20</td>
</tr>
</tbody>
</table>

To gauge the effectiveness of a restoration project, the actual rate of re-establishment following restoration must be evaluated. The extent to which this can be done depends on the time spent on follow-up, and since follow-up time varies considerably from one project to another, gauging the effectiveness of the measures taken can be difficult. This is one of the problems outlined in an article published in 2017 by Hein et al., which states that a minimum of five years should ideally be spent on follow-up in order to measure the resilience of a given ecosystem.

To calculate the average cost of ecological engineering techniques relating to coral reefs and associated ecosystems, we adjusted the costs for inflation (consumer price index) against a base year (2010) and for the difference in purchasing power between countries (purchasing power parity). This provided us with comparable data for multiple countries. All costs were expressed in international dollars/ha/year based on the base year (2010). The results are given in the tables below and in the corresponding pages of the guide.
Data on follow-up time for coral reef restoration projects (figure 15) shows that, whichever ecological engineering technique was used, follow-up time did not generally exceed three years. Follow-up periods of three years or more were observed for only 9% of projects (9% for transplanting; 5% for nurseries; 0% for electrodeposition). Estimating the actual effectiveness of techniques was thus difficult. The estimated rate of effectiveness given in this guide was determined based on the values available for follow-up periods of three years or more. This average rate of effectiveness should be treated with caution as not enough data was available for the values to be considered robust. The estimate that these values support is intrinsically linked to the implementation conditions of the examples cited (figure 16).

Table 2 Summary of data on the costs (int. dollar/ha/year) associated with each technique for coral reefs. Average costs are detailed on pages 25 to 27 of the guide. Note: These data comprise all project-related costs, meaning that scientific follow-up costs are also included in the data set.
For seagrasses, feedback was provided for transplantation only. No data was available for the other techniques used, namely sowing, passive management and micropropagation. Figure 17 below shows that follow-up periods of under two years applied to most (88%) of the projects cited (one to two years for 74% of projects and under one year for 14% of projects). Follow-up periods of five years or more applied to only 2% of projects. It was thus difficult to determine the average rate of effectiveness of seagrass transplantation projects, although averages were taken of calculated survival rates (of three years or more) to give a general idea (figure 18). In addition, the limited data did not allow for robust statistical values, so caution must be exercised in interpreting the results.

Table 3 Summary of data on the costs (int. dollars/ha/year) associated with each technique for seagrass restoration. Average costs are detailed on pages 61 to 64 of the guide. Note: These data comprise all project-related costs, meaning that scientific follow-up costs are also included in the data set.

<table>
<thead>
<tr>
<th>Cost in international dollars/ha/year</th>
<th>Transplantation</th>
<th>Sowing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>107 101</td>
<td>N/A</td>
</tr>
<tr>
<td>Mean (+– standard deviation)</td>
<td>327 289 (+429 460)</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum</td>
<td>33 962</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum</td>
<td>1 306 804</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of related projects</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 17 Duration of follow-up periods for seagrass transplantation (n=58)

Figure 18 Average survival rate and volume of data available according to duration of seagrass transplantation projects. The red area shows the values used to determine the average rate of effectiveness set out on page 61 of the guide.
MANGROVES

The same observation can be made for mangroves as was made above for the other ecosystems: few projects had a follow-up period of more than three years (figure 19). The findings were more nuanced in the case of mangrove nurseries and natural self-regeneration, although few projects were studied in these areas. The values used to determine the average rate of effectiveness of each ecological engineering technique for mangroves are highlighted in red in figure 20. Caution should be exercised in interpreting these averages, however.

Table 4: Data summary of the costs (int. dollars/ha/year) associated with each technique for mangroves. The average costs are detailed on pages 77 to 80 of the guide. Note: These data comprise all project-related costs, meaning that scientific follow-up costs are also included in the data set.

<table>
<thead>
<tr>
<th></th>
<th>Transplantation</th>
<th>Sowing</th>
<th>Nursery</th>
<th>Natural self-regeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost in international dollars/ha/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>248</td>
<td>4 117</td>
<td>61</td>
<td>3 877</td>
</tr>
<tr>
<td>Mean (± standard deviation)</td>
<td>62 197 (±147 704,82)</td>
<td>11 767 (±14 324)</td>
<td>61 (±0)</td>
<td>48 430 (±73 244,25)</td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td>6</td>
<td>61</td>
<td>16</td>
</tr>
<tr>
<td>Maximum</td>
<td>705 613</td>
<td>40 963</td>
<td>61</td>
<td>247 520</td>
</tr>
<tr>
<td>Number of related projects</td>
<td>51</td>
<td>25</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>
CONCLUSIONS
This paper is intended to encourage contracting authorities and developers to learn more about and evaluate ecological engineering techniques and their effectiveness. It is a tool to aid decision-making on ecological engineering matters based on feedback from around the world. In this respect, the information on survival rates and costs associated with the various techniques is geared towards improving the effectiveness of humanity’s response to marine and coastal ecosystems.

It would appear that the effectiveness of the techniques illustrated in this guide is similar in each case. To improve the effectiveness of ecological restoration in a given environment, Abelson (2006) recommends employing multiple ecological engineering techniques at the same time, although this hybrid approach is not well covered here (accounting for around 1% of projects).

It is worth remembering that the cost of implementing ecological engineering techniques in marine environments, at $110,000/ha, is high compared with continental terrestrial or aquatic ecosystems (Jacob, 2017; Bayraktarov, 2016).

Of course, there are many different techniques, some of which are given limited or no coverage here. The purpose of this guide is to establish an inventory of the most commonly used techniques for the ecosystems in question and to provide feedback on the projects discussed.

Note that passive management of coral reefs as an ecological restoration technique is not discussed here. French public policy currently considers that this type of restoration is a matter for voluntary citizens’ associations in the areas of environmental education and participatory science. Grants are sometimes awarded to associations for passive management, but this is considered as maintenance of natural spaces rather than restoration.
Summary of ecological restoration techniques for coral reefs and associated ecosystems

- **Mangroves**
 - Passive Management
 - Sowing
 - Micropropagation
 - Electrodeposition

- **Seagrasses**
 - Sowing
 - Electrodeposition

- **Coral reefs**
 - Passive Management
 - Sowing
 - Transplantation

SITE DEGRADED

SITE RESTORED (in situ and ex situ)

GREY LITERATURE

jets d'aménagements maritimes. [Towards a new coastal governance between development and environment? Mitigation of man’s environmental impact in maritime development projects.] Habilitation à Diriger des Recherches.

The Economics of Ecosystem Services and Biodiversity (TEEB) (2009). Intégration de l’Économie de la nature, rapport de 2009. [Integration of the nature economy, 2009 report.]

WEBSITES CONSULTED

https://ifrecor.fr/

http://ifrecor-doc.fr/items/show/1367

http://www.ifrecor-doc.fr/items/show/1743

http://www.ifrecor-doc.fr/items/show/1670

http://imars.marine.usf.edu/MC/

http://www.coralbiome.com/fr/

https://www.inserm.fr/thematiques/technologies-pour-la-sante/dossiers-d-information/biomateriaux/reparer-l-os
ARM sequence: Avoid, reduce, mitigate – a sequence aimed at avoiding and reducing residual impacts as much as possible, and then mitigating them, with a view to alleviating the environmental damage caused by a development project as much as possible.

Conservation: Protection of an ecosystem based on legislation (conservation covenants, nature reserves, etc.) and/or physical measures (restriction of physical access to protected areas).

Ecological engineering: All techniques and processes for solving socioeconomic and/or environmental problems in the short term through the use of living organisms or other materials of biological or non-biological origin.

Ecological equivalence: An essential step in implementing mitigation measures is to determine their scale. Mitigation outcomes should be ecologically equivalent. Thus, to ensure “no net loss” in biodiversity, it is important to gauge whether the mitigation gains are equivalent to the biodiversity losses caused.

Ecological restoration: The Society for Ecological Restoration defines ecological restoration as “the process of assisting the recovery of an ecosystem that has been degraded, damaged or destroyed”. This definition implies the need for human intervention to initiate and/or promote the natural restoration of a damaged ecosystem. Ecological restoration thus follows on from anthropogenic impacts (pollution, grounding of vessels, development work, etc.) and natural impacts (cyclones, typhoons, tsunamis, etc.). The aim is to return the ecosystem to its historical evolutionary trajectory rather than to its ideal state. Thus, an ecosystem is considered to have been restored where it can continue its development without human assistance. However, ecological restoration is difficult to implement in marine environments, as knowledge of how aquatic ecosystems work is still limited (Pioch et al., 2019).

Ecosystem creation: Establishment of an ecosystem for a useful purpose, or intentional replacement of an ecosystem with another type of ecosystem presumed to be of greater value on the site in question (Clewell and Aronson, 2010, p.295).

Ecosystem resilience: Ability of an ecosystem to return to normal functioning, development and dynamic equilibrium after a natural or anthropogenic disturbance.

Ecosystem service: Service provided by ecosystems to human beings.

Environmental mitigation: Environmental mitigation consists of implementing actions to create an equivalent environmental gain for an instance of environmental damage observed elsewhere, generally in line with a stated objective of ecological neutrality (“no net loss”). Equivalences can be evaluated in terms of plant or animal populations, habitats, resources, ecological functions or ecosystem services. Environmental mitigation can be based on legislation (the “avoid, reduce, mitigate” sequence) or on voluntary procedures. The ultimate aim is to maintain biodiversity and ecosystems at the scale of a particular territory.
Habitat Place where a plant or animal population or biological community lives. Includes different environments used at different stages of development and activity of those plant and animal populations.

Mitigation measure See “environmental mitigation”.

Rehabilitation Process of re-establishing the roles and functions of a damaged ecosystem, giving less regard to the indigenous species in the baseline model than restoration projects would, with the overarching aim of restoring productivity or, more generally, enabling the provision of ecosystem services (Clewell and Aronson, 2010, p.300).

Resilience Ability of an ecosystem to tolerate disturbances and re-establish itself autonomously through natural regeneration, without going through another stage controlled by other processes. In other words, the ability of an ecosystem to recover from a disturbance without human intervention. In social or socio-ecological systems, resilience enables people to anticipate and plan for the future (Clewell and Aronson, 2010, p.300).

Symbiosis An intimate and lasting association between two different species that ensures the survival of both.

ACRONYMS

ARM avoid, reduce, mitigate

IFRECOR French Coral Reef Initiative

MERCI-Cor Method to Avoid, Reduce and Mitigate Impacts in Coral Areas

N/A not applicable

SER Society for Ecological Restoration

UNEP-WCMC United Nations Environment Programme World Conservation Monitoring Centre